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SECF Service Exposure Control Function 

SLA Service Level Agreement 

SMF Session Management Function 

SN Secondary Node 

SNPN Standalone NPN 

SOA Service Oriented Architecture 

SON Self-Organized Networks 

SotA State-of-the-Art  

SPAD Single-photon avalanche diodes 

SRB Signalling Radio Bearer 

SSC Session and Service Continuity 

SotA State-of-the-Art 

SRP Stream Reservation Protocol 

TAS Time-Aware Shaper 

TAPI Transport Application Programming Interface 
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TDD Time Division Duplexing 

TDMA Time Division Medium Access 

TNAN Trusted non-3GPP access networks 

TNGF Trusted Non-3GPP Gateway Function 

ToF Time-of-Flight 

TSC Time Sensitive Communication 

TSN Time-Sensitive Networking 

TTI Transmission Time Interval 

UDR Unified Data Repository 

UDSF Unstructured Data Storage Function 

UE User Equipment 

UICC Universal Integrated Circuit Card 

UNI User Network Interface 

UPF User Plane Function 

uRLLC Ultra-Reliable Low Latency Communications 

VAF Virtualized Application Function 

VCSEL Vertical-Cavity Surface-Entity Laser 

VDU Virtual Deployment Unit 

VIM Virtualized Infrastructure Manager 

VISP Virtualized Infrastructure Service Provider 

VLC Visible Light Communication 

VNF Virtualized Network Function 

VNFD VNF Descriptor 

VPN Virtual Private Network 

WAT Wireless Access Technology 

WDM Wavelength Division Multiplexing 

YAML YAML (Yet Another Markup Language) Ain’t Markup Language 

YANG Yet Another Next Generation 
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Executive Summary  

This document, 5G-CLARITY D4.1, is entitled “Initial design of the SDN/NFV platform and identification of 

target 5GCLARITY ML algorithms” and describes the work developed in WP4 “Management Plane” during 

the first year of the project.  

The main contribution of this deliverable is a state-of-the-art analysis and an initial design for the main 

components of two stratums of the 5G-CLARITY architecture as defined in 5G-CLARITY D2.2, namely the 

Management and Orchestration stratum and the Intelligence stratum. 

For the Management and Orchestration stratum, this deliverable defines in detail the Service and Slice 

management subsystem and the Data Processing subsystem: 

 Service and Slice Management subsystem: A formal definition of a 5G-CLARITY slice and an initial 

design for the Slice Manager and the multi-WAT non real-time RAN Intelligent Controller are 

provided. A practical deployment of a 5G-CLARITY slice across the various wireless technologies, the 

transport network and the RAN and edge clusters is described. 

 Data Processing subsystem: An initial design to gather multi-WAT telemetry in a RAN Intelligent 

Controller is provided. Two main components of this subsystem are identified and described, namely 

the Data Streaming Engine, which can gather and manipulate streaming data from multiple sources 

in the network, and the Data Lake that makes data available to the Machine Learning models living 

in the Intelligence Stratum. 

For the Intelligence Stratum, this deliverable identifies Machine Learning use cases that are enabled by the 

5G-CLARITY system and provides an initial design for the AI Engine and Intent Engine components:  

 ML models: A set of 9 distinct Machine Learning models are identified that can be used to optimize 

network performance, including both non real-time and near real-time optimization. 

 AI Engine: Is defined as a containerised execution environment that can manage the lifecycle of 

Machine Learning models. The main APIs between the AI Engine and other components of the 5G-

CLARITY system are also identified. 

 Intent Engine: A set of eight use cases are identified that illustrate the use of the Intent Engine within 

the 5G-CLARITY system, including interactions between the network operator and the Intent Engine 

and between individual Machine Learning models and the Intent Engine. 

Overall, this document presents the main Management Plane innovations that will be developed in WP4 and 

sets the direction for the work that will be developed in 5G-CLARITY D4.2 and 5G-CLARITY D4.3. 
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 Introduction  

This deliverable, 5G-CLARITY D4.1, is the first report on the activities of the “WP4: Management Plane” in 

5G-CLARITY. The deliverable is aligned with the 5G-CLARITY architectural principles presented in deliverable 

D2.2 and develops two of the introduced therein, namely the “Management and Orchestration stratum” and 

the “Intelligence stratum”. The title of this deliverable is “Initial design of the SDN/NFV platform and 

identification of target 5G-CLARITY ML algorithms” and its main goal is to present the management plane 

innovations that will be developed in 5G-CLARITY throughput the duration of WP4, which include: i) design 

of slicing solutions for private networks, ii) design of integrated multi-WAT real-time telemetry systems, iii) 

novel mechanisms to integrate private and public networks, iv) network management algorithms powered 

by ML and hosted in an AI engine, and v) the design of intent based interfaces to ease the operation of private 

networks. 

1.1 WP4 overview  

5G-CLARITY WP4 works on the development of management systems for private networks. The relation of 

WP4 with other 5G-CLARITY Work Packages is depicted in Figure 1.1. The work in WP4 is driven by the use 

cases and architectural principles defined in WP2: “Scenario Descriptions, Architecture and Requirements”, 

and is aligned to the work developed in WP3: “User and Control Plane”, since the management systems 

defined in WP4 will be used to manage the functions developed in WP3. The output of WP4 is directly fed to 

WP5 “Integration, Experimentation, Proof-of-Concept and Demonstration”, where it will be used both in self-

contained demonstrations and in the project-wide use case demonstrations. 

 

Figure 1.1 5G-CLARITY Work Package Structure. 

The main objectives of WP4 are: 

 O4.1. Design and demonstrate a multi-tenant SDN/NFV management platform allowing to configure 

the private 5G/Wi-Fi/LiFi network infrastructure and to provision third-party connectivity services in 

less than 5 minutes. (OBJ-TECH-6) 

 O4.2. Design and demonstrate mechanisms to integrate the connectivity services provisioned over 

the 5G/Wi-Fi/LiFi infrastructure with an end-to-end (E2E) 5G slice in less than 10 minutes. (OBJ-TECH-
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7) 

 O4.3. Design and demonstrate an AI enabled engine, and the associated AI algorithms, which enables 

autonomic network management of the integrated 5G/Wi-Fi/LiFi infrastructure. (OBJ-TECH-8) 

WP4 is articulated by means of 3 main tasks as follows: 

 T4.1 Development of 5G/Wi-Fi/LiFi management platform, including policy language. The scope of 

this task is to design an SDN/NFV-based management platform to control the integrated 5G/Wi-

Fi/LiFi, transport, and compute infrastructure available in the private venue. The planned platform 

will provide the following functionalities: 

o Allow the venue operator to provision separate infrastructure slices, including resource 

quotas to support connectivity services provisioned by third-party or vertical tenants.  

o Allow 3rd-party or vertical tenants to provision connectivity services for authorized devices 

to access the 5G/Wi-Fi/LiFi infrastructure.  

o Design an intent based policy language, acting as the platform’s North Bound Interface (NBI), 

which can be used by the AI engine developed in T4.3 to manage the deployment and 

operation of the network. 

 T4.2 Integration with E2E 5G slice framework. The scope of this task is to provide specifications on 

the architectural framework to be used for the management and orchestration of E2E network slices. 

The concept of E2E means that a network slice will allow subscribed UEs to connect to the 5G/Wi-

Fi/LiFi APs within a private venue to reach MNO’s service functions and applications – hosted in the 

Central Office (CO) outside the venue - with tailored QoS and with isolation guarantees. The referred 

framework must integrate the in-premises 5G/Wi-Fi/LiFi management platform with an enhanced 

MANO platform owned by the MNO.  

 T4.3 AI engine development and learning algorithms, using historical network data for self-learning 

purpose. This task will support cognitive AI-driven processes that focus on both initial configurations 

to achieve high-level goals, and later “monitor and repair” activities. These processes will be guided 

by policies and data sources arising from T4.1 and will trigger/invoke management actions exposed 

by the E2E 5G slice management capabilities in T4.2. Appropriate ML-based analytics, policy-based 

decision making, and AI-based learning capabilities will be developed to allow initial intents to be 

achieved, and then support self-X capabilities to dynamically make decisions providing intelligent 

control mechanisms for achieving optimised performance, scalability flexibility and resilience.  

This deliverable reports mostly on the work of T4.1 and T4.3, since these are the two tasks that have been 

active since the beginning of the project, while T4.2 will begin at month 13. However, discussions related to 

the integration of private and public networks, which are relevant to T4.2, have already happened in the 

project within the context of the architecture discussions in WP2, and also within the context of the slicing 

discussions in WP4. Therefore, Section 3 in this document is included to introduce the topics of private public 

integration that will be further developed in T4.2.  

1.2 5G-CLARITY stratums requirements and initial designs  

Since this deliverable presents the initial design for the 5G-CLARITY Management and Orchestration stratum 

and the Intelligence stratum, and for the sake of readability, a summary of the requirements and architecture 

designs for these two stratums are presented in this section derived from 5G-CLARITY D2.2 [2]. These initial 

solutions will be elaborated in the rest of this deliverable.  
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 Management and orchestration stratum requirements and initial design  

Table 1-1 contains the 5G-CLARITY Management and Orchestration stratum requirements introduced in 5G-

CLARITY D2.2 [2]. 

Table 1-1 5G-CLARITY System Architecture Requirements. 

Requirement ID Requirement Description 

CLARITY-MOS-R1 
The 5G-CLARITY management and orchestration stratum shall be architected following the 
Service Based Management Architecture (SBMA) principles, with a set of MFs 
providing/consuming management services through a service bus. 

CLARITY-MOS-R2 
The 5G-CLARITY management and orchestration stratum shall allow for the provisioning 
of 5G-CLARITY resource-facing services (i.e. 5G-CLARITY wireless, compute and transport 
services).     

CLARITY-MOS-R3 

The 5G-CLARITY management and orchestration stratum shall keep a resource inventory, with 
information on the on-premise resources that can be used for the provision of 5G-
CLARITY resource-facing services. This includes information on: i) the resource capacity of 
deployed wireless access nodes, including Wi-Fi/LiFi APs and physical gNBs; ii) the compute 
nodes available in the clustered NFVI (RAN cluster and edge cluster), and related 
computing/storage/networking resources; ii) the capacity and topology of deployed transport 
network.  

CLARITY-MOS-R4 The 5G-CLARITY management and orchestration stratum shall store a catalog of VxFs/NSDs. 

CLARITY-MOS-R5 
The 5G-CLARITY management and orchestration stratum shall support to create, retrieve, 
update and delete VxFDs/NSDs 

CLARITY-MOS-R6 
The 5G-CLARITY management and orchestration stratum shall allow to create several 
instances of the same VxF/NFV service. 

CLARITY-MOS-R7 
The 5G-CLARITY management and orchestration stratum shall allow VxF / NFV service scaling. 
This scaling includes the scaling-in and scaling-out the resources of deployed VxF / NFV service 
instances.  

CLARITY-MOS-R8 
The 5G-CLARITY management and orchestration stratum shall allow for the provisioning 
of 5G-CLARITY slices, by defining separate resource quotas when allocating individual 5G-
CLARITY resource-facing services. 

CLARITY-MOS-R9 
The 5G-CLARITY management and orchestration stratum shall maintain information regarding 
the mapping between 5G-CLARITY slices, constituent 5G-CLARITY resource-facing services and 
allocated resources. 

CLARITY-MOS-R10 
The 5G-CLARITY management and orchestration stratum shall allow resource elasticity and AI-
assisted placement optimization as part of the 5G-CLARITY slice lifecycle management. 

CLARITY-MOS-R11 
The 5G-CLARITY management and orchestration stratum shall provide means for model-based 
data aggregation, with the ability to collect and process management data (e.g. performance 
measurements, fault alarms) from different sources in an automated and scalable manner. 

CLARITY-MOS-R12 
The 5G-CLARITY management and orchestration stratum shall be able to correlate aggregated 
data with deployed 5G-CLARITY slices and services instances, providing input to the 
intelligence engine for AI assisted operation of these instances. 

CLARITY-MOS-R13 
The 5G-CLARITY management and orchestration stratum shall provide necessary cloud-native 
capabilities for MF service production/consumption across the entire stratum. 

CLARITY-MOS-R14 
The 5G-CLARITY management and orchestration stratum shall allow individual 5G-
CLARITY customers (e.g. MNOs) to securely access and consume MF services. 

CLARITY-MOS-R15 
The 5G-CLARITY management and orchestration stratum shall provide the means to expose 
capabilities with appropriate abstraction levels to individual 5G-CLARITY customers    

CLARITY-MOS-R16 
The 5G-CLARITY management and orchestration stratum shall provide isolation among 
customers’ workflows and request    
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Figure 1.2 5G-CLARITY management and orchestration stratum: an SBMA approach., introduced in 5G-

CLARITY D2.2, provides and overview of the Management Functions (MF) included in the Management and 

Orchestration stratum, which offer services to each other through a common Service Bus. 

 

Figure 1.2 5G-CLARITY management and orchestration stratum: an SBMA approach. 

The MFs composing the Management and Orchestration stratum can be arranged into four main functional 

groups: 

 Service and slice provisioning: Grouping all the MFs that are involved in the provisioning of 5G-

CLARITY slices, composed of wireless, transport and compute resources, as they have been defined 

in Section 2.3.2. 

 Data processing and management: Grouping all the MFs that collect telemetry data from the 

physical and the Network Function stratums, in order to make the data available to the Intelligence 

stratum or to the external entities interacting with the management plane. 

 Cloud native support: These are MFs required to enable a cloud native deployment of the 5G-

CLARITY management and orchestration stratum. For example, enabling the deployment of stateless 

MFs that can be scaled dynamically in a cloud environment. 

 External access mediation: Including MFs that police the interactions with external entities, such as 

the intelligence stratum or an external OSS, e.g. belonging to a mobile network operator (MNO). 

A state-of-the-art (SotA) analysis and an initial design for the components of the Management and 

Orchestration stratum will be provided in this deliverable in Section 2 focusing on the two sub-components 

that require most innovations in the context of 5G-CLARITY, namely the Service and Slice Provisioning sub-

system and the Data Processing and Management subsystem.  

 Intelligence stratum requirements and initial design 

Table 1-2 contains the 5G-CLARITY Intelligence stratum requirements introduced in 5G-CLARITY D2.2 [2].  

Table 1-2 Requirements for the 5G-CLARITY intelligence stratum. 

Requirement ID Description 

CLARITY-INTS-R1 
The 5G-CLARITY intelligence stratum shall leverage machine learning (ML) models to support 

intelligent management of network functions. 
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CLARITY-INTS-R2 

The 5G-CLARITY intelligence stratum shall host ML models and offer them as services that are 

accessible outside of the intelligence stratum. Consumers of the ML services are either the 

network operator or other network functions. 

CLARITY-INTS-R3 

The 5G-CLARITY intelligence stratum shall provide a point of access for ML services to 

consume data from the network and forward recommended configurations to suitable 

network functions. 

CLARITY-INTS-R4 
The 5G-CLARITY intelligence stratum shall provide ML designers a process or interface to 

manage the lifecycle of ML models, including the deployment as services. 

CLARITY-INTS-R5 

The 5G-CLARITY intelligence stratum shall expose a communication interface towards the end 

user that simplifies the management of the 5G-CLARITY platform using intents, including 

intent-based network configuration and intent-based usage of available ML services. 

CLARITY-INTS-R6 
The 5G-CLARITY intelligence stratum shall expose an intent management interface through 

which the intent lifecycle can be controlled, including creation and removal. 

Figure 1.3, introduced in D2.2, describes the two main components of the Intelligence stratum, namely the 

AI engine and the Intent engine, where the AI engine provides hosting and management of ML services, as 

well as aiding ML designers, and the Intent engine provides point of contact to and from the AI engine as 

well as a layer of abstraction towards the consumer of the AI functionalities, such as the network operator. 

Also shown are the high-level interfaces towards the operator, the ML designer, 5G-CLARITY network 

components (such as Slice Manager) and 5G-CLARITY Data Management. 

 

Figure 1.3 Architectural overview of the 5G-CLARITY intelligence stratum with its two main components, the AI 

engine and the Intent engine.  

A state-of-the-art (SotA) analysis and an initial design for the components of the Intelligence stratum is 

provided in this deliverable in Section 4 (ML algorithms running in the AI engine), Section 5 (AI engine design) 

and Section 6 (Intent engine design). 

1.3 Objective and scope of this document  

Deliverable D4.1 takes input from 5G-CLARITY D2.1 [1], and has been co-developed alongside deliverable 

D2.2 [2], where WP4 has contributed some of the architectural aspects described in D2.2, which serve as 

basis for the initial designs presented in this document. This deliverable is also influenced by the user and 
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control functions reported in D3.1 [3], especially in the design of the ML algorithms in Section 5. The output 

of this deliverable will be used within WP4 to further develop the initial designs reported here towards D4.2. 

This deliverable will also be used in WP5 to define demonstration scenarios. This deliverable marks de 

acceptance criteria for milestone MS4.1. “Specification of Management Platform in North Bound Interface 

with AI engine and third-party MANO services”. 

D4.1 reports on state-of-the-art research and the definition of the initial innovations that will be executed in 

the various tasks of WP4, in the following way: 

 T4.1: defining a new concept of network slice tailored to multi-tenant private network deployments, 

defining multi-WAT telemetry solutions, and defining and intent engine to ease the operation and 

configuration of the private network. 

 T4.3: Introducing the concept of an AI engine used to host ML algorithms that will perform a set of 

network management functions and defining 9 ML algorithms that will be developed and 

demonstrated throughput the project. 

 T4.2: Introducing an initial set of slice management models, explaining how 3rd parties (e.g. MNOs) 

can interact with the private network slices enabled by the systems defined in T4.1. Note that the 

actual work in T4.2 starts at month 13. 

D4.1 has been carefully aligned with the architectural principles described in D2.2, and in particular this 

deliverable develops through its various chapters the “Management and Orchestration stratum” and the 

“Intelligence stratum” introduced in D2.2. 

1.4 Document structure  

The rest of this document is structured as follows: 

 Chapter 2: Provides state-of-the-art research and initial solution design for the 5G-CLARITY network 
slicing subsystem for private networks, and for the 5G-CLARITY telemetry subsystem. 

 Chapter 3: Provides an initial discussion on the interaction between 5G-CLARITY private networks 
and MNOs, which will be further developed in D4.2. 

 Chapter 4: Describes a set of 9 ML algorithms that will be developed and demonstrated during the 
project. 

 Chapter 5: Provides state-of-the-art research and initial solution design for the AI engine included in 
the 5G-CLARITY “Intelligence stratum” that is used to host and manage ML functions. 

 Chapter 6: Provides state-of-the-art research and initial solution design for the Intent engine 
included in the 5G-CLARITY “Intelligence stratum”. 

 Chapter 7: Summarizes and concludes this document. 
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 Management Platforms for Private Networks  

2.1 Virtualization of Compute and Transport infrastructure in private networks  

This section aims to provide an overview on the virtualization of cloud computing and transport technologies 

within the scope of the 5G-CLARITY ecosystem. For this, the most popular open source computing platform 

solutions and Software Defined Networking (SDN) controller technologies are listed. 

 State of the art 

 Virtualization on compute infrastructures  

Cloud computing is the delivery of on demand computing services including servers, storage, databases, 

networking, applications and processing power over the Internet (on a pay as you go basis) to offer faster 

innovation, flexible resources, and economies of scale. Cloud computing platforms are integrated tools that 

provide management of cloud environments. These tools incorporate self-service interfaces, provisioning of 

system images, enabling metering and billing, and providing some degree of workload optimisation through 

established policies. This enables user to issue a request through a Cloud Controller to provision a virtual 

infrastructure somewhere on available resources within a Data Centre (DC). The Cloud Controller provides 

the central management system for cloud deployments. The most popular open source computing platforms 

are OpenStack and Kubernetes. 

OpenStack [4] is a cloud operating system that offers an open source cloud computing platform for 

infrastructure as a service (IaaS) for both public and private clouds, where virtual servers and other resources 

are made available to users. OpenStack controls large pools of compute, storage, and networking resources 

in a DC, where all of them are managed and provisioned through APIs with common authentication 

mechanisms. These components are accessible through a unique dashboard that gives administrators 

complete control while empowering the end users to provision resources through a web interface. All 

OpenStack source code is available under an Apache 2.0 license. 

OpenStack has a modular design that enables integration with legacy and third-party technologies. It is built 

on a shared-nothing, message-based architecture with modular components, each of which manages a 

different service. These services, together, instantiate an IaaS Cloud. OpenStack is composed of 10 key 

components. The primary component is the Nova compute service, which allows the end user to create and 

manage large number of virtual servers using the machine images. Nova is based on a modular architectural 

design where services can reside on a single host or, more commonly, on multiple hosts. OpenStack 

provisions and manages large networks of Virtual Machines (VMs) through open source libraries such as 

libvirt [5], where each VM requires its own underlying Operating System (OS) to run over a virtualized 

resource. The main disadvantage of a VM is that it can take up a lot of system resources. Each VM runs not 

just a full copy of an operating system, but a virtual copy of all the hardware that the operating system needs 

to run. This quickly adds up to a lot of RAM and CPU cycles. That is still economical better when compared 

to running separate actual computers.  

Kubernetes [6] is a portable, extensible, open-source platform for managing containerized workloads and 

services, which empowers organizations to build and run scalable applications in modern, dynamic 

environments (i.e. public, private, and hybrid clouds). It works with a range of container tools, including 

Docker. Kubernetes defines a set of building blocks (primitives), which collectively provide mechanisms that 

deploy, maintain, and scale applications based on CPU, memory or custom metrics. Many cloud services 

offer a Kubernetes-based platform or infrastructure as a service (PaaS or IaaS) on which Kubernetes can be 

deployed as a platform-providing service. 
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Kubernetes includes services such as service architectures, infrastructure as a code, automation, continuous 

integration/delivery (CI/CD) pipelines, observability/monitoring tools, etc. Instead of VMs that requires its 

own underlying OS to run over a virtualized resources, Kubernetes is used to develop applications built with 

services packaged in containers, deployed as microservices and managed on elastic infrastructure through 

agile DevOps processes and continuous delivery workflows. Each container shares the host OS kernel and, 

usually, the binaries and libraries. This makes containers lighter weight than VMs where every instance has 

its own OS, binaries and libraries. In addition, containers only use the hardware resources that are needed 

at run- time, so there is no reservation of resources as in the case of VMs. Kubernetes is used as an industry 

de facto standard container orchestrator, which can be deployed either on the bare metal servers or on top 

of some virtualization technology. 

Public Cloud is a platform that uses the standard cloud computing model to make resources (e.g. virtual 

machines (VMs), applications or storage) available to users remotely. Public cloud allows for scalability and 

resource sharing, which is not possible for a single organization to achieve. Public cloud architecture is 

categorized by the service model, including: 

 Software as a service (SaaS), is a cloud model in which a third-party provider hosts application and 

makes them available to customers over the internet. 

 Platform as a service (PaaS), is a computing model in which a third-party provider delivers hardware 

and software tools to its users as a service. So, it allows an organization to develop software without 

needing to maintain the underlying infrastructure. 

 Infrastructure as a service (IaaS), in which a third-party provider offers virtualized computing 

resources, such as VMs and storage, over the internet or through dedicated connections. So, an 

organization outsources their entire DC to a cloud service provider. This model makes cloud adoption 

simpler.  

The main examples of Public Clouds are providers such as Amazon Web Services, Google Cloud Platform and 

Microsoft Azure, which offer pay-per-usage deals that allow organizations to pay only for the resources they 

use. 

Private Cloud is a cloud service that delivers similar advantages to public cloud, including scalability and self-

service, but through a private infrastructure. Unlike public clouds that provide service to multiple 

organizations, the private cloud is a single tenant environment, which doesn’t not share resources with any 

other organization. Resources can be hosted and managed in a variety of ways. Resources may be based on 

infrastructure already present in an organization's on-premise DC (managed and maintained by the 

organization internally) or on a separate infrastructure, which is provided by a third-party organization. 

Figure 2.1 shows the difference between public cloud and private cloud.  

 

Figure 2.1 Comparison of Private and Public cloud. 
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 SDN control of Ethernet transport technologies  

SDN is a network architecture that enables network programmability by means of decoupling the Control 

Plane (CP) from the User Plane (UP), and by means of using open interfaces.  As shown in Figure 2.2, the SDN 

architecture consists of three functional layers: infrastructure, control, and application. The infrastructure 

layer comprises a set of simple and low-cost network devices that can be configured and monitored through 

the southbound interface (SBI) by a logically centralized SDN controller (SDNC). The SDNC provides an 

abstraction of the network to the application layer. In this way, the SDN applications might consume network 

services and capabilities without being tied to their implementation details. The northbound interface (NBI) 

allows the interaction between the SDN applications and the SDNC. The SDN applications (e.g. telemetry, 

routing, firewalling, load balancing, policy enforcement, etc.) implement network intelligence. The SDN 

paradigm brings substantial benefits to network operators such as cost reduction, faster rollout of new 

services, and more granular service policies, among others. 5G-CLARITY considers Ethernet as the most 

relevant technology for providing enterprise networking services inside 5G private networks. Thus, we will 

focus on giving an overview of the SDN solutions for Ethernet-based transport technologies. More precisely, 

we will list the most representative existing frameworks and protocols for every SDN architectural 

component. 

 

Figure 2.2 Basic SDN architecture proposed by the Open Networking Foundation [210]. 

Table 2-1: Description of the Most Representative SDN SBIs Solutions. 

SBI Solution Description 

OF  

(OpenFlow) [7] 

Goal: Complete SBI to enable SDNC to control and monitor the forwarding plane devices. 

OF was defined by the Open Networking Foundation (ONF) and is considered the first 

SDN standard and de facto standard in SDN. 

Principle: Set of well-defined messages that enables an SDNC to add, remove, or update 

flow entries from the OF compliant switches. 

HAL  

(Hardware Abstraction 

Layer) [8] 

Goal: Solve OF compatibility issues in legacy network elements. 

Principle: Set of abstractions. Two sublayers: i) the Cross-Hardware Platform Layer 

(CHPL), and ii) the Hardware-Specific Layer (HSL). CHPL is in charge of node abstraction, 

virtualization and configuration processes. HSL discovers the specific hardware platform 

and performs the required specific configurations. 

POF  

(Protocol Oblivious 

Forwarding) [9] 

Goal: Protocol-agnostic forwarding devices and data-path enhancement with stateful 

instructions. 

Principle: To use a generic flow instruction set (FIS) 
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OpenState [10] 

Goal: Reduce OF signalling overhead and SDNC processing load. 

Principle: To leverage the Extended Finite State Machine (XFSM) to implement different 

stateful tasks inside the network devices (e.g. port knocking and MAC learning). 

P4 [11] 

Goal: Make OF more generic (protocol-agnostic) 

Principle: Flexible mechanism to parse packets and match header fields. It includes a 

programmable parser to define new headers. Unlike OF, it supports the parallelization 

of the Match and Action stages. 

PAD (Programming 

Abstraction Datapath) 

[12] 

Goal: Expose capabilities of network processors through a simple DP forwarding model 

valid for different types of networking hardware (e.g., programmable network 

processors, CPUs, optical devices, GEPON, DOCSIS). 

Principle: Creation of a library-based interface for managing and controlling DP protocols 

and DP functions. 

DevoFlow [13] 

Goal: Reduce OF signalling overhead 

Principle: The SDNC is only in charge of targeted and significant flows. The provision of 

aggregated flow statistics (this requires significant changes in the switch –costly-).   

OvSDB  

(Open vSwitch Database 

Management Protocol) -

RFC 7047- [14] 

Goal: Complement OF with management and configuration capabilities out of OF scope. 

Principle: Management and configuration interface for long timescale operations (e.g., 

C/M/D of OF data-paths, configuration of a set of SDNCs, configuration of a set of 

managers, C/M/D of ports) in Open vSwitch. 

OF-CONFIG 

(ONF-TS-016) [15] 

Goal: Companion protocol to OF for configuring the OF operational context.     

Principle: Management and configuration interface for long timescale operations (e.g., 

OF controllers to OF DPs assignment, switch port enabling/disabling). 

ForCES (Forwarding and 

Control Element 

Separation) [16] 

Goal: SDN framework and SBI defined by IETF as an alternative to OF. 

Principle: A Network Element (NE) consists of Control Elements (CEs) and Forwarding 

Elements (FEs). A CE controls an NE via the ForCES protocol. This protocol also allows CEs 

to control and manage any ForCES-modelled FE. The FE abstraction models can be 

flexibly defined by the developers using the modelling language ForCES model. 

OpFlex [17] 

Goal: Proprietary SBI defined by Cisco through an IETF draft. 

Principle: OpFlex is based on a declarative policy information model, i.e., policy and 

management are centralized, whereas intelligence and control are distributed. There is 

a centralized Policy Repository (PR) that contains the policies and communicates with 

policy elements via OpFlex protocol. However, OpFlex does not include the functionality 

of programming the network from a centralized controller. 

NetConf 

(Network Configuration 

Protocol) 

-RFC 6241- [18] 

Goal: SBI intended to provide to provide a programmatic interface to the device that 

closely follows the functionality of the device's native interface. 

Principle: NetConf employs Remote Procedure Call (RPC) paradigm to realize the 

operations. It is a simple protocol for installing, manipulating, and deleting the 

configuration of network devices. It employs an Extensible Markup Language (XML)-

based data encoding for the configuration data and the protocol messages. 

SRv6 

(Segment Routing IPv6) 

[19] 

Goal: To provide a flexible and scalable mechanism for realizing source routing, i.e., the 

routing decisions are taken at the source and encoded in the packet header. 

Principle: Segment routing enables the addition of state information (a list of Segments) 

to packet headers. A Segment might instruct the packet steering over a given path or the 

packet delivery to a given service. This feature reduces the overhead at network devices 

and simplify and accelerate the service setup. 

Among the SBIs listed in Table 2-1, 5G-CLARITY will focus on OF, OvSDB and NetConf to manage wireless and 

transport devices inside private venues. 
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In contrast to SBI, there has been little standardization effort for the NBI definition. The reason behind this 

might be the heterogeneity needs of the control and management applications and their dependence on the 

specific scenario. Despite this, most of the SDNCs include support for RESTful APIs, which employ HTTP 

requests, as NBI. Table 2-2 includes a comparison of commonly used open-source SDNCs, where their 

supported NBIs are listed. It shall be mentioned that these open-source controllers are used as a basis of 

many commercial SDN solutions provided by telecom equipment vendors. 

Table 2-2: Qualitative Comparison of Popular Open Source SDNCs. 

Controller Characteristics 

ONOS  

(Open Network 

Operating System) 

[20] 

Description: Leading open source SDNC controller to build carrier-grade solutions targeted 
for service provider networks. 
Features: Web-based GUI, modular, easily extensible, horizontally scalable, telemetry 
support through pluggable modules, and resiliency through replication.  
Supported SBIs: OpenFlow, P4, NetConf, TL1, SNMP, BGP, RESTCONF, OvSDB, and PCEP. 
Supported NBIs: gRPC and RESTful APIs. 
Programming Language: Written in Java. 
Community: Linux Foundation Networking 

ODL  

(OpenDayLight) [21] 

Description: Open platform for customizing and automating networks of any size and scale. 

It was designed from the outset as a foundation for commercial solutions addressing wide 

range of use cases. It is suitable for SD-LAN and Cloud Integration spaces. 

Features: Web-based GUI, Modular, easily extensible, model-based approach (it requires a 

global, in-memory view of the network for logic computations), limited telemetry 

functionality, and resiliency through replication.  

Supported SBIs: OpenFlow, P4, NetConf, SNMP, BGP, RESTCONF, OvSDB, and PCEP. 

Supported NBIs: gRPC and RESTful APIs. 

Programming Language: Written in Java 

Community: Linux Foundation Networking. This project has the largest community support 

of all open source SDN controllers. 

OpenKilda [22] 

Description: Highly scalable SDNC architected from the ground up from web-scale 

technologies. It was devised to manage unreliable CP spanning across multiple carriers over 

long distances. It is successful in a distribution production environment. It combines 

Floodlight (SDNC), Kafka (message bus for telemetry), Apache Storm (storm-based cluster of 

agents for processing), OpenTSDB (data storage and analysis). 

Features: GUI, Modular, easily extensible, highly scalable, native support for telemetry, and 

resiliency through replication.  

Supported SBIs: OpenFlow 

Supported NBIs: RESTful APIs. 

Programming Language: Written in Java. 

Community: Much of the development and maintenance burden to its current users. 

Ryu [23] 

Description: Ryu is a component-based defined networking framework. It provides software 

components with well-defined API. Ryu can be regarded as a toolbox, with which SDNC 

functionality can be built.  

Features: Modular, easily extensible, no built-in clustering capability, no built-in telemetry 

functionality.  

Supported SBIs: OpenFlow, NetConf, OF-Config, and partial support of P4 

Supported NBIs: RESTful APIs. 

Programming Language: Written in Python 

Community: Active community developing the framework, it is well supported. 

Faucet [24] 
Description: Compact OF SDNC, which enables network operators to run their networks the 

same way they do server clusters. Faucet moves network control functions to standard 

server-based software where those functions are readily manageable and extensible with 
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common systems management approaches. It is built on top of Ryu, it includes two SB 

connections to the DP. One for configuration updates, the other (Gauge) for collecting and 

transmitting state information. 

Features: Modular, easily extensible, lightweight and highly scalable, built-in telemetry 

functionality, no built-in mechanisms for availability.  

Supported SBIs: OpenFlow 1.3 and support for feature such as VLANs, IPv4, IPv6, static, and 

BGP routing, port mirroring, policy-based forwarding and ACLs matching. 

Supported NBIs: YAML configuration files to track the target system state. It opens the SDN 

to administration by well-understood CI/CD pipelines and testing apparatus.   

Programming Language: Written in Python. 

Community: Active community developing the framework and it is well supported. 

Regarding commercial SDN controllers, there are plenty of solutions out there. As a general rule, every 

vendor has its own solution. Many of these solutions are built on top of open source SDN controllers. Table 

2-3 includes the primary functionalities of three commercial SDNCs from top telecom equipment vendors. 

Table 2-3 Qualitative Comparison of Some Popular Commercial SDNCs. 

Vendor/Controller or 

SDN Solution 
Product Description 

Ericsson / Ericsson Cloud 

SDN [25] 

Network virtualization solution that provides connectivity for virtual, physical and 

container-based workloads. It combines an industrialized OpenDayLight controller with 

advanced routing capabilities. 

Key features:  

 Open: It is aligned with ETSI architecture and is based on open-source software 

(e.g., OpenDayLight and OVS). Integrated with OpenStack via standard APIs. 

 Enables Network Automation and Layer 3 services. 

 Developed and hardened for telecom grade deployments. 

Huawei / Huawei Cloud 

SDN Solution  

(Agile Controller) [26] 

Intended to large-scale data center networks. For NBIs, it uses RESTful APIs. For SBIs, it 

uses OpenFlow, OVSDB, and NetConf. 

Key features: 

 Automatic deployment. 

 Refined O&M. 

 Highly Reliable Clusters. 

 Open architecture. 

 Service-based network model customization. 

 Easy-to-use GUI for management. 

 Enables the rollout of new services within minutes. 

 Easy integration with mainstream cloud platforms. 

NEC / PF6800 

Programmable Flow 

Controller [27] 

Three operation modes: i) OpenFlow Switch Fabric (OSF) which is an OF-based virtual 

network solution for switch control; ii) edge automation that employs traditional 

protocols for switch control; and iii) Hybrid mode that combines OSF and edge 

automation.   

Key features: 

 Easy-to-use management interface and drag-and-drop configuration. 

 Optimized and automated path selection with zero packet loss. 

 Telemmetry (accesible via a GUI). 

Among the existing open-source and commercial SDN controllers 5G-CLARITY will favor ONOS and 

OpenDayLight that are the most widely adopted open source solutions. 
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Regarding the management plane (MP) of SDN networks, there are several proposed reference models such 

as TAPI (Transport API) [28], ACTN (Abstraction and Control of Traffic engineered Networks) [29], and COP 

(Control Orchestration Protocol) [30] that abstract the control plane functions of the SDN network. These 

reference models typically define a basic set of management services (e.g., topology service, connectivity 

service, inventory service, path computation service, virtual network service, and notification service) to 

facilitate the automation of the SDN network operation, deal with the heterogeneity of NBIs, and realize the 

concept of Transport Network as a Service (TNaaS). By way of illustration, the ACTN framework is a set of 

management a control functions defined by the IETF Traffic Engineering and Signalling Working Group. ACTN 

enables the abstraction of the underlying physical topology of the SDN forwarding plane and cross-domain 

coordination within the SDN networks. In this way, ACTN enables the customer to create and operate virtual 

transport networks, while hiding the complexity of the underlying infrastructure. There is an ongoing project 

for developing ACTN reference model with ONOS [31]. 

Last, it is noteworthy to mention, there are several private network scenarios such as Industry 4.0 demanding 

deterministic Quality of Service (QoS). In this vein, IEEE 802.1Q Time-Sensitive Networking (TSN) standards 

appear as a promising option. The TSN standard is a converged Layer 2 network technology able to provide 

stringent deterministic QoS in terms of reliability, E2E latency and jitter, and frame loss. In the same way, 

Deterministic Networking (DetNet) is an IETF ongoing standardization effort to ensure deterministic QoS in 

Layer 3. TSN and DetNet define SDN like architectures for controlling the DP network devices. There are 

proposals in the literature for the integration of the TSN centralized CP and standard SDN. 

2.2 Orchestration frameworks for private networks 

 State of the art 

NFV MANO (network functions virtualization management and orchestration) is an architectural framework 

for managing and orchestrating virtualized network functions (VNFs) and other software components [32]. 

The European Telecommunications Standards Institute (ETSI) Industry Specification Group (ISG NFV) defined 

the MANO architecture to facilitate the deployment and connection of services as they are decoupled from 

dedicated physical devices and moved to virtual machines (VMs). The focus of NFV MANO is highlighted in 

Figure 2.3. NFV MANO is broken up into three main functional blocks:  

 NFV Orchestrator (NFVO) is responsible for: 1) on-boarding of new network service, VNF forwarding 

graph and VNF packages, 2) NS lifecycle management (including instantiation, scale-out/in, 

performance measurements, event correlation, termination), 3) global resource management, 

validation and authorization of network functions virtualization infrastructure (NFVI) resource 

requests and 4) policy management for NS instances. 

 VNF Manager (VNFM) is responsible for lifecycle management of VNF instances, and overall 

coordination and adaptation role for configuration and event reporting between NFVI and the 

traditional element / network management system (E/NMS). 

 Virtualized Infrastructure Manager (VIM) is responsible for controlling and managing the NFVI 

compute, storage and network resources, within one operator’s infrastructure sub-domain, as well 

as collection and forwarding of performance measurements and events. 

These blocks are responsible for deploying and connecting functions and services when they are needed 

throughout the network. Such capabilities allow to launch and manage E2E services in minutes, instead of 

hours. It also enables a new range of features such as agile service provisioning, multitenancy, software 

controlled and dynamic management, on demand service-oriented resource allocation, universal multi 

access, and integration and interoperability among different network resources. In this ecosystem, the NFV 

MANO framework is an essential enabler to ease and realize 5G vision. 
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Figure 2.3 NFV MANO framework. 

To handle its responsibilities the NFV MANO framework includes a group of repositories, namely NS catalog, 

VNF catalog, NFV Instances and NFVI resources. In addition to MANO internal functional blocks, there are 

two important external elements, the EMS and OSS/BSS, continuously exchange information with the MANO 

framework in order to meet the expected operational requirements.  

NFV entities to deploy and manage by MANO framework are listed below:  

 Network Service (NS) described by its descriptor file, orchestrated by NFVO. It may cover 1 or more 

VNF Graphs, VNFs and Physical Network Functions (PNFs) 

 VNF Forwarding Graph (VNF-FG) described by its descriptor file, orchestrated by NFVO. It may cover 

VNF-FGs, VNFs and NFs. 

 Virtualized Network Function (VNF) described by its descriptor file, instantiated by the VNF Manager. 

It covers VNF components (VNFC) each mapped to a VM described with the Virtual Deployment Unit 

descriptor. 

Information in the NFV entities is structured into information elements, which may contain a single value or 

additional information elements that form a tree structure. Information elements can be used in two 

different contexts: as descriptors or as run-time instance records. Next, we describe the main descriptors 

defined by ETSI NFV: 

 Network Service Descriptor (NSD) is referencing all other descriptors, which describe components 

that are part of that NS. 

 VNF Descriptor (VNFD) describes a VNF in terms of its deployment and operational behaviour 

requirements. It also contains connectivity, interface and virtualized resource requirement. 

 VNF Forwarding Graph Descriptor (VNFFGD) describes a topology of the NS or a portion of the NS, 

by referencing VNFs and PNFs and Virtual Links that connect them. 

 Virtual Link Descriptor (VLD) describes the resource requirements that are needed for a link 

between VNFs, PNFs and endpoints of the NS, which could be met by various link options that are 

available in the NFVI. 
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 Physical Network Function Descriptor (PNFD) describes the connectivity, interface and KPIs 

requirements of virtual links to an attached physical network function.  

 Virtualisation Deployment Unit (VDU) describes the deployment and operational behaviour of a 

subset of a VNF, or the entire VNF if it was not segmented in subsets. A VDU is deployed as a VM in 

the VNF. 

ETSI NFV MANO Orchestration Platform 

Next, existing ETSI NFV MANO orchestration platforms are analysed to see if there is possibility to adopt 

them in the specific context of 5G-CLARITY. The main ETSI NFV MANO orchestration platforms are: 

Open Baton is an open source platform that provides a comprehensive implementation of the ETSI NFV 

MANO specification [33]. The main features and components of Open Baton are 1) a NFVO; 2) a generic 

VNFM that manages VNF life cycles based on the VNF description; 3) an Auto-scaling engine which can be 

used for automatic runtime management of the VNFs; 4) a fault management system for automatic 

management of faults; 5) an SDK comprising a set of libraries that could be used for building a specific VNFM; 

and 6) a dashboard for managing the VNFs. Open Baton is currently using OpenStack as first integrated NFV 

point of presence (PoP) VIM, supporting dynamic registration of NFV PoPs and deploys in parallel multiple 

slices, one for each tenant, consisting of one or multiple VNFs. Through this functionality, the orchestrator 

provides a multi-tenant environment distributed on top of multiple cloud instances. 

Cloudify is an open source TOSCA-based orchestration platform [34], which is designed to fit as an NFVO and 

a generic VNFM. VNFs and PNFs are modelled using the TOSCA language and on-boarded to Cloudify. 

Cloudify model driven Design allows operators to build VNF descriptors and network service descriptors and 

manage the lifecycle of the network service. By its very nature, Cloudify Blueprints might be considered as 

the NS and VNF catalog entities defined by MANO. Cloudify is aligned with the MANO reference architecture 

but not fully compliant. 

Tacker is an official OpenStack project [35] that builds a generic VNFM and a NFVO to deploy and operate 

network services and VNFs on an NFV infrastructure platform like OpenStack (at this moment, the multi-VIM 

is not supported, as Tacker only supports OpenStack). It is based on ETSI MANO architectural framework and 

provides a functional stack to Orchestrate Network Services E2E using VNFs. 

Open Network Automation Platform (ONAP) [36] provides a platform for real-time, policy-driven 

orchestration and automation of physical and virtual network functions, which allows providers and 

developers to automate new services and support lifecycle management. The orchestration stack on ONAP 

provides for service delivery, change, scaling controller instantiation and capacity management across both 

the application and network controllers. 

Open Source MANO (OSM) [37] is an operator-led ETSI community effort that is delivering a production 

quality open source Management and Orchestration (MANO) stack aligned to the ETSI NFV information 

models and that meets the requirements of production NFV networks. OSM provides a solution for 

onboarding and instantiation of network services including VNFs for different use cases in the virtual and 

physical network elements. It is also covering all the aspects of network service life-cycle management and 

network function life-cycle management. OSM takes a huge step towards 5G network deployments and their 

E2E orchestration by telecom operators, making it an ideal choice for 5G scenarios and any kind of Network 

as a Service (NaaS) offer. The main and extended features of OSM are: 

 Provides a python-based client library and REST interfaces to enables access to all features, as well 

as a set of plugin models for integrating multiple monitoring tools and SDN controllers. 

 Provide dynamic creation of inter-datacentre connections across heterogeneous Wide-Area 

Networks (WANs). 

 Bringing complete support of 5G network slices for the cloud domain and cloud-native applications 
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to NFV deployments. 

 Expanding orchestration capabilities across transport, physical and hybrid networks. 

 Extended support of Service Function Chaining (SFC) monitoring capabilities, including VNF metrics 

collection; and support for physical and hybrid network functions, (PNFs and HNFs respectively). 

Summaries of the solutions demonstrate that most of existing orchestration tools are limited to the cloud 

domain and not dealing with RAN and transport network. In addition, the slicing and cloud-native 

applications are not tackled, so they do not explicitly handle solutions in the context of 5G-CLARITY project. 

Among others, the project has chosen to utilize the ETSI OSM for the orchestration as it is the only solution 

that provides required features to our project. 

Edge Computing Orchestration Framework 

Edge computing is an extension of cloud architectures to the edge of the network, close to the devices that 

produce and act on data. The value proposition of this new model is that: i) it can process data close to where 

they are collected thus minimizing processing latency; ii) it offloads gigabytes of network traffic from the 

core network; and, iii) it keeps sensitive data inside the network itself. Like in the cloud domain, edge 

resources require to be orchestrated and managed. Here, we are reviewing some orchestration frameworks 

that have been designed for edge computing: 

Open Network Edge Services Software (OpenNESS) is an open source software toolkit that enables the 

deployment of edge compute services on diverse platform and access technologies [38]. It supports the 

deployment of edge services in a network and can be extended in functionality into a commercial platform 

or be re-used to add capability to existing edge platforms. OpenNESS is designed to reduce the “deployment 

impedance” experienced by network operators, independent hardware vendors (IHVs), and independent 

software vendors (ISVs) in deploying edge services. To achieve this goal, OpenNESS provides a variety of 

features such as: 

 Exposes platform and hardware diversity to edge applications and orchestrators. 

 Supports the extension of public cloud services into the edge network, as well as the RAN 

technologies in the edge networks, including wire, Wi-Fi, LTE and 5G mobile networks. 

 Supports Artificial Intelligence (AI) and media computing application frameworks. 

 Supports edge applications and network edge application onboarding, as well as core networks.  

 Supports VM deployments on Kubernetes, OpenStack. 

ONF Aether is an open source Enterprise 5G/LTE Edge-Cloud-as-a-Service platform (ECaaS) [39], which 

provides mobile connectivity and edge cloud services for distributed enterprise networks, all provisioned 

and managed from a centralized cloud. Aether is optimized for multi-cloud deployments, and it 

simultaneously supports wireless devices over licensed, unlicensed and lightly licensed (CBRS) spectrum. It 

also can support mobility and edge services across a multi-site footprint as an elastic and scalable cloud 

service, simplifying deployment. Management is centralized in the cloud providing enterprise-wide visibility 

and a centralized dashboard for management. 

The described edge computing orchestration frameworks do not adhere to the NFV MANO architecture and 

information elements and therefore will not be considered in 5G-CLARITY , given that our focus is designing 

management frameworks for private networks that can be easily integrated with 5G public networks where 

NFV MANO is being used. 
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2.3 Network slicing in private networks  

 State of the art  

 Legacy pre-slicing techniques 

Network slicing is a new concept brought in holistically within the new 5G paradigm in the Third Generation 

Partnership Project (3GPP) specification from Release 15 (Rel-15) onwards. However, to a very reduced and 

lesser extent, there have been certain network sharing and pre-slicing aspects since the early days of 3GPP 

Rel-9 specification, albeit more related to Quality of Service (QoS) management or network sharing aspects. 

a) QoS Class Identifiers (QCIs) and Guaranteed Bit Rate (GBR) 

 In [40] the LTE Rel-9 specifications already specified the concept of E2E QoS by means of the Evolved Packet 

System (EPS) bearer/ EPS-Radio Access Bearer (E-RAB) for E2E QoS control in the EPC/E-UTRAN architecture. 

The Service Data Flows (SDFs) mapped to the same EPS bearer receive the same bearer level packet 

forwarding treatment (e.g. scheduling policy, queue management policy, rate shaping policy, Radio Link 

Control (RLC) configuration, etc.). An EPS bearer/E-RAB is referred to as a GBR bearer if dedicated network 

resources related to a GBR value that is associated with the EPS bearer/E-RAB are permanently allocated at 

bearer establishment/modification. Otherwise, an EPS bearer/E-RAB is referred to as a Non-GBR bearer. This 

EPS bearer service layered architecture is depicted in Figure 2.4.   

The bearer level QoS parameters are QCI, Allocation and Retention Priority (ARP), GBR, and Aggregate 

Maximum Bit Rate (AMBR). The QCI is a scalar that is used as a reference to access node-specific parameters 

that control bearer level packet forwarding treatment. There is a one-to-one mapping of standardized QCI 

values to standardized characteristics. The ARP primary purpose is to decide whether a bearer establishment 

/ modification request can be accepted or needs to be rejected in case of resource limitations.  Each GBR 

bearer is additionally associated with the GBR, which is the bit rate that can be expected to be provided by 

a GBR bearer.  E2E resource allocations for GBR bearers are considered for admission control of new bearers 

to guarantee that bitrate. To an extent, the use of GBR and ARP could be considered as a primitive pre-slice 

resource reservation technique.  While GBR is used to guarantee the minimum data rate to be maintained 

to support by a single bearer, the User Equipment (UE)-AMBR and Access Point Name (APN)-AMBR are the 

maximum aggregated bitrates associated with a group of bearers per UE or APN respectively.  

 

Figure 2.4: EPS bearer service architecture.  
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b) APN  

From [41]  a UE can be connected to more than one Packet Data Network (PDN) for different types of services, 

for example typically UEs can use different APN associated to the different PDNs such as “internet” for 

normal internet or “ims” for VoLTE services. This possibility to separate services on an APN basis could also 

be seen as a way to “slice” the services of the network. Within the APN, the above E2E QoS framework is 

applied. 

c) Network Sharing: Multi-Operator Core Network (MOCN) 

In [42] the defined network sharing architecture allows different core MNOs to connect to a shared radio 

access network. This network sharing can either be implemented as Multi-Operator Core Network (MOCN), 

i.e., with Non-Access Stratum Node Selection Function (NNSF) within the eNodeB, or GateWay -GateWay 

Core Network (GWCN), i.e. with NNSF within the EPC. MOCN enables not only the possibility to support 

neutral host use cases where the eNodeB connects different MNO subscribers to each participating MNO 

EPC based on the PLMNID used during registration, but also the support of pure S1-Flex configurations for 

load sharing between different pools of Mobility Management Entities (MMEs) and Serving Gateways (SGWs) 

for single MNO use cases. Multi-operator RAN (MO-RAN) is a special case of network sharing whereby the 

Radio Units (cells) are fully dedicated to each MNO normally using their own licensed spectrum, but all the 

underlying mechanisms used to support it (e.g. broadcasting multiple PLMNIDs, NNSF, etc.) are the same as 

for MOCN. 

d) Dedicated core network selection function (DECOR)/enhanced DECOR (eDECOR) 

DECOR was part of 3GPP Rel-13 [43]  and 3GPP Rel-14 (eDECOR) to provide a finer grained granularity for 

differentiated services within a PLMNID [44]. DECOR enabled the EPC selection function within the PLMNID 

for different types of subscribers associated to different Dedicated Core Networks (DCN). The purpose with 

a dedicated core network may be to provide specific characteristics and/or functions or isolate specific UEs 

or subscribers, e.g. machine-to-machine (M2M) subscribers, subscribers belonging to a specific enterprise or 

separate administrative domains, etc. The main architecture enhancements are to route and maintain UEs 

in their respective dedicated core network, i.e. for UEs with assigned DCN. DECOR introduced UE usage type 

parameter in Home Subscriber Server (HSS) and signalling procedures to define which DCN (i.e. service) a 

specific UE should be attached to, within the same PLMNID.  eDECOR enhanced DECOR with assistance data 

to UE so that Non-Access Stratum (NAS) Initial UE message re-routing is not needed.  

 Network slicing concept 

Network slicing has emerged as a solution to economically provide the tenants’ use cases over a common 

infrastructure. For this reason, the main Standard Developing Organizations (SDO) have taken the leadership 

role on analysing the concept of network slicing as well as standardizing its management and orchestration 

mechanisms. A brief description of SDO contributions on network slicing can be found in 5G-CLARITY 

deliverable D2.2 [45]. Below, we provide an insight into the network slicing contributions related to multi-

Wireless Access Technology (WAT) networks and private networks. Finally, we also provide a brief 

description about the latest advances on slicing. 

 Radio Access Network (RAN) slicing for multi-WAT networks 

Thanks to network slicing, 5G systems are expected to be flexible infrastructures where slices are created 

with appropriate isolation and optimized characteristics to address the requirements of a specific application. 

This is especially relevant for the RAN, where resources are expensive, scarce and cannot be overprovisioned. 

Focusing on RAN slicing, the slices run on top of the wireless platform which contains radio hardware and 

the set of infrastructure resources. A RAN slice can be seen as a particular RAN behaviour, and it has to be 

designed in order to meet specific RAN capabilities and networks characteristics required by different 
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services associated with a given Single-Network Slice Selection Assistance Information (S-NSSAI) and Public 

Land Mobile Network (PLMN). According to [46], network slicing in RAN must concern about a series of key 

principles such as RAN awareness of slices to make distinctions in traffic handling in accordance to different 

network slices requirements; the slice availability; and the correct resource management and isolation 

between them. Different works available in the literature have addressed the isolation and the radio 

resource management between RAN slices [47], [48]. 

From a functional perspective of RAN slices, their radio functionalities are gathered in gNodeB (gNBs). These 

gNBs split their functionalities into Distributed Units (DUs) and Centralized Units (CUs). The DU comprises 

lower-layer functionalities and might be partially implemented as VNFs in micro servers while the CU 

comprises higher-layer functionalities and might be totally implemented as VNF in an edge cloud. This 

functional split allows to benefit from the processing centralization and ease the aggregation of multi-WAT, 

e.g. Wi-Fi and LiFi, over common functionalities. 

Among the existing works in addressing RAN slicing in non-3GPP access networks, [52] introduces a resource 

slicing scheme which realizes autonomic management and configuration of virtual Access Points (AP) in a LiFi 

attocell access network based on service providers and their user service requirements. This scheme 

comprises of traffic analysis and classification, a local AP controller, downlink and uplink slice resource 

manager, traffic measurement, and information collection modules. The proposed resource slicing scheme 

collects and analyses different applications traffic statistics supported on the slices defined in each LiFi AP 

and distributes the available resources fairly and proportionally among them. In [53], RAN slicing in Wi-Fi 

networks is addressed where a scheduling algorithm that allocates airtime to a set of virtual interfaces 

executing on the same or in different physical radios is developed.  

5G-CLARITY will advance the SotA by considering network slices supporting radio access technologies beyond 

5GNR, i.e., Wi-Fi and LiFi. Furthermore, 5G-CLARITY goes beyond the SotA by developing a RAN slice 

orchestrator able to cope with radio frequency resources (licensed and unlicensed spectrum) and LiFi 

resources. 5G-CLARITY slices will have to deal with multi-connectivity features supporting the Access Traffic 

Steering, Switching and Splitting (AT3S) function, which oversees traffic steering between 3GPPP and non-

3GPP accesses [54]. 

 Network slicing solutions for private networks from 5G-PPP projects 

Working in parallel with SDOs, 5G-PPP Phase 3 projects consider the SDO solutions for network slicing and 

provide novel contributions to that field. Within this phase, two groups are relevant to the 5G-CLARITY  scope 

as shown in Figure 2.5,  a) infrastructure projects (ICT-17 call), i.e. 5G-VINNI, 5G-EVE and 5GENESIS, and b) 

vertical use case projects (ICT-19 call), i.e. 5GSMART, 5G-TOURS, FULL5G, 5G!DRONES, 5GROWTH, 5G-HEART, 

5GSOLUTIONS, 5G-VICTORI [1]. On the one hand, ICT-17 projects provide a pan-European large-scale 5G 

validation network infrastructure that demonstrates how key 5G Key Performance Indicators (KPIs) can be 

met, accessed and used by industry verticals to set up research trials of innovative use cases, testing and 

validating specific applications that depend upon those KPIs. On the other hand, ICT-19 projects aim the 

technical and business validation of 5G technologies from the verticals’ viewpoint, following a field-trial-

based approach on vertical specific private venues, e.g., factories, campus, etc.  
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Figure 2.5: Overview of relevant 5G-PPP Phase III projects, and their relation as "public" (ICT-17) and "private" (ICT-

19) 5G networks [1]. 

Under this context, the network defined within the logical perimeter of a vertical-owned site (i.e., private 

network) usually consists of one (or more) network domain(s). The rest of the domains thus shall be provided 

an external network (i.e., public network) out of the logical perimeter of the vertical premises. To integrate 

both, the public and non-public networks, network slicing takes a key role. Specifically, with an ICT-17 site 

providing a given ICT-19 site with missing 5G components (e.g., 5G control plane, ICT-17 support application) 

and necessary connectivity (e.g., WAN connectivity) in the form of a dedicated Network Slice Subnet Instance 

(NSSI). By attaching this NSSI to the on-premises deployed components, the ICT-19 site can have an E2E 

Network Slice Instance (NSI) at his disposal. An illustrative example of this integration is depicted in Figure 

2.6.  

Focusing on the network slicing solutions provided by ICT-19 projects, most of them are in their infancy 

because only abstracted concepts have been developed at the moment of writing this deliverable. Other ICT-

19 projects such as 5G-TOURS and 5GROWTH have already provided more exhaustive details about their 

solutions for network slicing. Specifically, 5G-TOURS provides an efficient and reliable close-to commercial 

services for tourists, citizens and patients in three different types of cities: (a) the safe city where e-health 

use cases will be demonstrated; (b) the touristic city focused on media and broadcast use cases; and (c) the 

mobility-efficient city that brings 5G to users in motion as well as to transport related service providers [55]. 

To provide the vertical customers with a friendly interface to request and operate network slices, 5G-TOURS 

implements a service layer on the top of the management architecture. Specifically, this layer includes 

management mechanisms such as slice definition, creation, monitoring management and deletion by means 

of network slice blueprints. 5G-CLARITY will use the 5GT Vertical Slicer component from the 5G-Transfomer 

project (i.e., a 5G-PPP Phase 2 project) as a baseline to implement the network slice blueprint and the service 

layer [56].   
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Figure 2.6: Example of public and private network integration with network slicing (5G-CLARITY, 2020). 

5GROWTH aims to enable the uniform and automated deployment and operation of customized network 

slices for emerging use cases (e.g., Industry 4.0, transportation and energy on vertical premises). As the 

starting point, 5GROWTH inherits the 5G-TRANSFORMER architecture for managing network slices [57]. 

5GROWTH architecture is composed of three layers: 5GROWTH vertical slicer (5Gr-VS), 5GROWTH service 

orchestrator (5Gr-SO), and 5GROWTH resource layer (5Gr-RL). 5Gr-VS acts as entry point for verticals to 

request a custom network slice. It manages the mapping and translation between the requested vertical 

services (selected from the catalogue of Vertical Service Blueprints (VSB)) and a number of NSIs that are 

created on demand, by provisioning the associated NFV network services mediated through the 5Gr-SO. 5Gr-

VS also implements the functionalities to manage the lifecycle of the network slices and their network slice 

subnets that can be mapped into the Network Slice Management Function (NSMF) and Network Slice Subnet 

Management Function (NSSMF). 5Gr-SO is responsible for E2E orchestration of NS and lifecycle management. 

It provides both NS and resource orchestration capabilities to instantiate network slices within and across 

multiple domains. 5Gr-RL hosts all the compute, storage and networking physical and virtual resources 

where network slices and E2E services are executed.  

In a nutshell, the ICT-19 projects assume an integration of public and private networks to provide use cases 

required by the industry verticals. In these projects, network slicing is the key enabler to perform this 

integration. Furthermore, in order to automate the deployment and operation of the necessary network 

slices, AI and Machine Learning (ML) play a key role. In 5G-CLARITY, we do not only adopt these innovations, 

but we also give a step further by considering a scenario where the private venues have available multi-WAT, 

i.e., 5GNR, Wi-Fi and LiFi. The aim of using multi-WAT is to enhance the available capacity in the vertical 

premises [58]. 

 Latest advances on network slicing 

Some of the latest advances in network slicing such as multi-domain slicing, hybrid slicing and deep slicing 

are introduced below. 

a) Multi-domain slicing  

Multi-domain slicing refers to the slicing techniques that span across all the network domains, including RAN, 

core and transport domain. The network slices that embrace all the network domains are typically referred 
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to as E2E slices. 

In recent years, several solutions for network slicing were introduced in the literature, however, most of 

them focus on single domains. Specifically, early solutions have been focused on the core network, (e.g., 

[59]). Then came slicing solutions for the RAN and transport networks (e.g., [60] for RAN slicing and [61] for 

transport network slicing). However, neither of these solutions contemplate a network slice as an E2E 

solution. For this reason, the last advances on network slicing by the research community are focused on E2E 

solutions on several aspects. For example, in [62] POSENS is designed, which is a practical open source 

solution for E2E network slicing. This solution extends the SotA proposals by including in the prototype 

characteristics such as multi-slice UE, slice-aware RAN solution, and specific multi-slice MANO capabilities. 

Other works further focus on improving technical aspects on the management architecture for E2E slicing. 

For instance, [63] provides an implementation of an E2E network slice orchestration platform aiming at the 

evaluation of its performance in terms of dynamic deployment of network slices in an E2E fashion. They also 

discuss how the slice orchestrator functionality can be enhanced to better customize the network slices 

according to the needs of their respective service. Finally, some works provide mathematical frameworks to 

manage and orchestrate E2E slices, such as [64], in which a model to build a network slice request and map 

it into the infrastructure network is presented. The mapping process consists of the placement of VNFs and 

selection of link paths chaining them. In this solution, a complex network theory to obtain the topological 

information of slices and infrastructure network is also adopted.  

b) Hybrid slicing and deep slicing 

Hybrid slicing is a concept used to refer to those scenarios where the available radio resources are not 

allocated in static portions to the different slices. This means there is an amount of resources that is shared 

between slices that offer different kind of services as demonstrated in Figure 2.7. The distribution of these 

shared resources must be optimal according to the needs of the existing slices throughout their lifetime. 

Under this context, a dynamic resource allocation framework to facilitate RAN slicing among heterogeneous 

services is proposed [65]. It aims at jointly optimizing the bandwidth allocation and power consumption for 

IoT devices while satisfying the corresponding latency for sporadic ultra-Reliable Low Latency 

Communication (uRLLC) traffic arrivals and the quality of enhanced Mobile Broadband (eMBB) services as 

much as possible. Some radio resources are reserved for uRLLC and eMBB slices in advance, while others are 

shared according to the queue backlog to customize the frequency bandwidth slice.  

The concept of deep slicing was introduced in [66]. It refers to have any kind of service, any resource and 

any function wherever, in such a way that multiple stakeholders can be supported using one infrastructure. 

To achieve this goal, all the novel slicing techniques and technologies must be involved, such as E2E slicing, 

multi-domain slicing and proper slices scaling and isolation. 

5G-CLARITY will consider E2E slices in two different ways. First, the 5G-CLARITY management stratum 

described in deliverable D2.2 [45] will be able to deploy multi-domain slices within the private venue 

composed of multi-WAT, transport and compute services. Second, the 5G-CLARITY slices within the private 

venue may be complemented with slices offered over a public network. 
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Figure 2.7: Radio resource allocation for hybrid services.  Figure taken from [65]. 

 5G-CLARITY slicing model and realization  

A 5G-CLARITY slice is defined as an on-premise infrastructure slice, i.e., an isolated set of resources that are 

segregated from the private infrastructure for their delivery to separate tenants. This means 5G-CLARITY 

slicing enables isolation among tenants. Note that the use of network slicing in 5G-CLARITY differs from the 

one in 3GPP community, i.e., while for 5G-CLARITY it is multi-tenancy support, for 3GPP it is multi-service 

support (the ability to deliver tailored functionality for different services). Once a single 5G-CLARITY slice is 

delivered to a specific tenant, one or more customer-facing services could be provisioned using the set of 

resources (hereinafter referred as resource chunks) which comprises this 5G-CLARITY slice. These customer-

facing services (augmented reality applications, enhance positioning automated guided vehicles) could be 

modelled as one or more ETSI-NFV network services, i.e., a composition of NFs implemented as VNFs and a 

set of wireless and transport services configured on PNFs, as they will be defined later. The delivered 5G-

CLARITY slice could be deployed across different network domains, i.e., RAN Transport Network (TN) or Core 

Network (CN). This means the 5G-CLARITY slice has an E2E nature.  

Depending on the intended use of individual 5G-CLARITY slices, a tenant could be either: 

 A Communication Service Provider (CSP) / Digital Service Provider (DSP), either public or private: It 

uses the 5G-CLARITY slice as received from the private network operator, without further 

modifications. The CSP/DSP simply builds communication services on top of the slice.  With this setup, 

the services are entirely provisioned within the boundaries of the private venue.  

 A public network operator: It uses the 5G-CLARITY slice received from the private operator to define 

a new slice, with further functionality. The public network operator can then re-sell this slice to public 

or private CSP/DSPs, fostering B2B2X partnerships. The process of defining a new slice out of the 5G-

CLARITY slice can be done using two different approaches. On the one hand, the public network 

operator can deploy public VNFs on the private infrastructure, using the in-house resources 

managed by the private network operator, and attach these VNFs to the original 5G-CLARITY slice. 

Note that the resulting slice is also on the on-premise slice. On the other hand, the public operator 

can extend the original 5G-CLARITY slice to the PLMN, where the public operator can do further 

processing (e.g., aggregating public VNFs, or extend coverage). Unlike the first scenario, the resulting 
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slice is not an on-premise slice, as it includes PLMN resources. These off-premise resources are 

beyond the management scope of private network operator, and therefore of 5G-CLARITY system. 

 An hyper-scaler: It performs an equivalent tenant role as the public network operator, with the only 

difference that off-premise resources are not PLMN resources, but private cloud resources, e.g., 

Google Cloud, Amazon Web Services, Microsoft Azure. The consideration of this tenant is out of 5G-

CLARITY scope. 

Focusing on the resource chunk composition of a 5G-CLARITY slice, it can be seen as a tailored set of 5G-

CLARITY  resource-facing services, i.e., a) one or more 5G-CLARITY wireless services; b) one or more 5G-

CLARITY compute services; and c) one or more 5G-CLARITY transport services. These individual services could 

be flexibly combined to define a wide range of different 5G-CLARITY slices. These services are individually 

detailed below. 

A 5G-CLARITY wireless service represents the configuration that needs to be set on one or more APs or base 

stations from a specific WAT, in order to make them operationally ready for one 5G-CLARITY slices. 

Additionally, different WATs require the definition of separate 5G-CLARITY wireless services, thus the 

number of 5G-CLARITY wireless services in a 5G-CLARITY slice ranges from one to a maximum of three, i.e., 

LTE/5GNR, Wi-Fi and/or LiFi. Figure 2.8 shows an example of 5G-CLARITY slice with three different 5G-

CLARITY wireless services. If the WAT of a 5G-CLARITY wireless service consists of LTE or 5GNR APs, i.e., eNBs 

or gNB-DUs, these must be configured to radiate a given PLMN Identifier (PLMN ID). When the WAT of a 5G-

CLARITY wireless service consists of Wi-Fi or LiFi APs, these APs must be configured to radiate a given Service 

Set Identifier (SSID).  

A 5G-CLARITY compute service is a composition of VNFs, each providing a well-defined network functionality. 

This means a 5G-CLARITY compute service can be modelled as a single ETSI-NFV NS. Among the VNFs which 

a 5G-CLARITY slice comprises, a subset of them must implement the 3GPP functionality that is required to 

provide connectivity from end-user devices to a data network. The number of 5G-CLARITY compute services 

required by a given 5G-CLARITY slice depends on the modularity in the 5G-CLARITY slice design. The higher 

the modularity, the higher the number of compute services needed. For example, the VNFs providing the 

control plane functionalities of 5G CN, the UPF (along with the correspond vAPP) and the gNB-CU (along with 

the dRAX) could be modelled as separate 5G-CLARITY compute services (NSs provisioned each on a single 

site), or could be arranged into one single 5G-CLARITY compute service (a NS provisioned over multiple sites), 

or any combination in between. The former case is depicted in Figure 2.8. In this example, one network 

service deployed in the RAN cluster implements the gNB-CUs and the dRAX for a 5G-CLARITY slice. Other 

three network services deployed in the Edge cluster implement the CN control plane, and two UPFs (along 

with their vAPPs), respectively.  

A 5G-CLARITY transport service represents the configuration that needs to be set on TN devices in order to 

make them deliver the traffic from one or more 5G-CLARITY wireless services into one or more 5G-CLARITY 

compute services. TN could comprise Ethernet and/or Time-Sensitive Networking (TSN) switching devices. 

In 5G-CLARITY, the frames of each transport service will be uniquely signalled by using one or more 802.1Q 

VLAN tags.  
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Figure 2.8 Deployment example of an on-premise 5G-CLARITY slice. 

For a given 5G-CLARITY wireless/compute/transport service within a 5G-CLARITY slice, it is required to define 

the specific size for the resource chunk to be allocated for that 5G-CLARITY service. This amount of resources 

is referred to as resource quota. The definition of resource quotas for each 5G-CLARITY slice ensures their 

proper isolation during their lifetime. The definition of resource quota for each 5G-CLARITY slice must be 

detailed for each constituent 5G-CLARITY wireless/compute/transport service. We describe the meaning of 

resource quota for each 5G-CLARITY service as follows. 

A 5G-CLARITY wireless quota is the set of wireless resources (i.e., averaged over a time interval) which are 

allocated in each AP of a specific 5G-CLARITY wireless service. This quota could be strict or float. A strict 

quota means wireless resources are not allowed for other 5G-CLARITY slices even when they are not used 

by the defined 5G-CLARITY slice. A float quota means wireless resources could be allowed for other 5G-

CLARITY slices if they are not used by the defined 5G-CLARITY slices. When the WAT supported by the 

wireless service consists of LTE/NR APs, the wireless resources correspond to Physical Resource Blocks (PRBs). 

If the WAT supported by the wireless service consists of Wi-Fi APs, the wireless resources correspond to the 

percentage of airtime consumption. Finally, if the WAT supported by the wireless service consists of LiFi APs, 

the wireless resources are specific wavelengths and/or airtime on a wavelength. The 5G-CLARITY wireless 

quotas will be enforced through the multi-WAT non real time Controller (see section 2.3.2.1.1). 

A 5G-CLARITY compute quota is the set of virtualized computing, networking and/or storage resources from 

cloud infrastructures (e.g., the RAN and/or edge cluster) which are allocated for a 5G-CLARITY slice.  

 For virtualized computing resources, the 5G-CLARITY compute quota comprises a restriction on the 
number of virtualized CPUs, the number of virtualization containers (e.g., virtual machines) or the 
size of the virtual memory (i.e., virtualized RAM).  

 For virtualized networking resources, the 5G-CLARITY compute quota comprises a restriction on the 
number of public IP addressed, the number of ports and the number of subnets.  

 For virtualized storage resources, the 5G-CLARITY compute quota includes a limitation on the storage 
size, the number of snapshots and the number of volumes.  

To implement the 5G-CLARITY compute quota for each 5G-CLARITY compute service, a VIM project (i.e., 

OpenStack project) will be created. 
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A 5G-CLARITY transport quota is the set of transport connectivity resources that can be allocated to a 5G-

CLARITY transport service.  The resources available for use depend on the underlying transport technology, 

and could be expressed in different terms, including data-rate, latency or buffer space.  To signal a 5G-

CLARITY transport quota for each 5G-CLARITY transport service, tools such as Control Orchestration Protocol 

(COP) or Transport API (TAPI) will be used.  

Finally, the definition of 5G-CLARITY slice comprises a set of service identifiers as: 

 One or more S-NSSAIs. Each S-NSSAI is used to connect the UEs with a specific customer-facing 

service. Figure 2.8 shows an example of a 5G-CLARITY slice using two S-NSSAIs, i.e., 5G-CLARITY slice 

1 using S-NSSAI1 and S-NSSAI2, each used for connecting UEs with the vAPP1 and vAPP2, respectively.  

 One PLMN ID. This mandatory identifier identifies the operator which provide the 5G-CLARITY slice, 

i.e., the private owner or the public operator. 

 One or more Service Set Identifiers (SSIDs). Each SSID identifies a specific customer-facing service for 

those UEs connected to the 5G-CLARITY slice by a non-3GPP 5G-CLARITY wireless service (i.e., Wi-Fi 

and LiFi). This means a 5G-CLARITY slice requires one SSID per S-NSSAI if a non-3GPP 5G-CLARITY 

wireless service offers this customer-facing service. 

 Initial design for the 5G-CLARITY slicing support system 

As introduced in D2.2 the 5G-CLARITY management stratum contains a slice and service support system that 

is composed by the following Management Functions (MFs):  

 VIM: Providing computer, storage and network virtualization services. Refer to Section 7.1.1 in D2.2 

[2]. 

 NFVO: Providing NSD and VNF lifecycle management services. Refer to Section 7.1.1 in 5G-CLARITY 

D2.2 [2]. 

 Transport Controller: Providing connectivity services within the private venue. Refer to Section 7.1.2 

in 5G-CLARITY D2.2 [2]. 

 Multi Wat non real Time RAC: Providing wireless service lifecycle management and configuration 

support services for wireless PNFs. Refer to Section 7.1.3 in 5G-CLARITY D2.2 [2]. 

 Slice Manager: Providing E2E lifecycle management services for 5G-CLARITY slices. Refer to Section 

7.1.4 in 5G-CLARITY D2.2 [2]. 

Figure 2.9 depicts the internal architecture of the 5G-CLARITY slice support system, highlighting candidate 

interfaces to be used among the different management functions. 
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Figure 2.9. Internal architecture and interfaces of the 5G-CLARITY slice and service support system. 

A major goal in WP4 will be the development of the 5G-CLARITY slice and service support subsystem, which 

involves the previous MFs. In order to accomplish this goal 5G-CLARITY will leverage work that is already 

available in the SotA, while focusing the work on the key aspects required to showcase the 5G-CLARITY 

concept.  

The following table depicts the approach that will be followed to develop each of the MFs that constitute 

the 5G-CLARITY slice and service support system. 

Table 2-4 Slice and Service Support System MFs. 

MF 
Reference 

Implementation 
Comments 

VIM 
OpenStack and 

Kubernetes 

The 5G-CLARITY slice and support system will support both VM and 

container-based network services. 

NFVO OSM Release 7 Provides native support for VM and container-based network services. 

Transport 

Controller 
OpenDayLight 

Custom path allocation modules developed in the 5G-XHAUL and 

5GPICTURE projects will be reused that expose COP interfaces 

Multi-WAT non-

RT Controller 
Custom 

Initial design developed in the 5GCITY and 5GPICTURE project will be used 

and extended in 5G-CLARITY 

Slice Manager Custom 
An initial design developed in the 5GCITY project will be used an extended 

in 5G-CLARITY 

Next, we describe in more detail the initial design for the multi-WAT non-RT (non-RT) Controller and the Slice 

Manager modules, which are the MFs that will contain the main innovations in 5G-CLARITY. 

2.3.2.1.1 Initial design for the multi-WAT non real time controller MF 

Figure 2.10 depicts the target architecture of the 5G-CLARITY multi-WAT non real time controller, 

highlighting in red new functions that will be developed or extended in 5G-CLARITY, and in orange pre-

existing functions that will be extended in 5G-CLARITY. 
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Figure 2.10. Tentative design for the 5G-CLARITY multi-WAT non-RT Controller. 

The 5G-CLARITY multi-WAT non-RT controller will manage three types of physical and virtual network 

functions: 

 The i2CAT integrated Wi-Fi and SDN switch described in 5G-CLARITY D3.1. This device will interface 

with the multi-WAT non-RT controller through NETCONF, OvSDB and Openflow. NETCONF will be 

used to provision virtual APs radiating a given SSID and to configure the wireless and wired interfaces 

available in the box. OvSDB will be used to provision software bridges inside the box that are used 

to isolate traffic from different slices (refer to 5G-CLARITY D3.1 [3]), and Openflow is going to be 

used to control forwarding within the integrated Wi-Fi-LiFi L2 network as described in 5G-CLARITY 

D3.1.  

 pureLiFi’s APs are controlled using NETCONF and OvSDB to provision 5G-CLARITY wireless services, 

as well as configuring the physical access points. 

 Accelleran dRAX Virtual Network Function will provide a single NETCONF server that allows to 

provision PLMNIDs on the different physical small cells, as well as configuring 5GNR parameters. 

The internal design of the 5G-CLARITY multi-WAT non-RT controller will follow a micro-service architecture 

consisting in the following modules: 

 NETCONF, OvSDB and OpenFlow clients. OpenDayLight will be used as OpenFlow driver, with a 

custom module developed in the 5GPICTURE project (vlan-mngr-cop) that provides a higher level of 

abstraction and allows to provision E2E paths without the need of programming the Openflow tables 

in each i2CAT box. 

 A core service module called ‘racoon-core’, which will expose all the functions of the multi-WAT non-

RT controller defined in 5G-CLARITY D2.2 to the other MFs of the 5G-CLARITY management plane 

using a REST API. It is worth highlighting that racoon-core will expose advanced services to allow to 

control the amount of resources allocated in a box to a SSID or PLMNID, which will be communicated 

through NETCONF to the underlying box. Racoon-core will also expose a service to control the access 

point or small cell that a user needs to attach to. These advanced services can be exploited by the 

Machine Learning models in the intelligence stratum to optimize the network. 
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 Auxiliary modules, like a Prometheus server to gather radio telemetry from the Wi-Fi and LiFi access 

points, a database to maintain state that needs to persist across reboots, and a local Grafana module 

to enable visualization of collected telemetry. 

2.3.2.1.2 Initial design for the slice manager MF 

The internal architecture of slice manager of 5G-CLARITY is illustrated in Figure 2.11. The slice manager 

consists of two main functional blocks: 1) Network Slice Lifecycle Management, and 2) Slice Repository:   

 Network slice lifecycle management is an entry point to the Slice Manager of the 5G-CLARITY slice 

and service support system that can be accessed by the Slice User via the dashboard. It is responsible 

for coordinating and allocating required resources and services upon request. 

 Resource manager is an internal module of Network Slice Lifecycle Management, which is 

responsible for handling request for creating slices and allocate resources to the underlying 

infrastructures, i.e. wireless/transport/compute. 

 Service manager is another internal module of Network Slice Lifecycle Management. It is responsible 

for deploying E2E network services and provision network functions, in collaboration with NFVO, for 

different verticals over the allocated slices. 

 Slice repository is responsible for storing information related to the network slices. It stores 

Information related to the virtual and physical resources of the slices, such as which virtual resources 

belong to the slice, which physical resources they are mapped to, and to whom each slice belongs.  

The slice manager also includes a northbound API and a set of Endpoints. The northbound API is a 

subcomponent that is envisioned to provide a REST interface to Slice Manager, enabling the access to the 

slicing functionalities to authorized parties. Northbound API will also provide a complete overview of Slice 

Manager features and information. To achieve so, it will interact with different Slice Manager’s components 

in order to retrieve the requested information correlating multiple sources of data, if needed. The endpoints 

are used to provide interface to the underlying resources, including NFVO, VIM, multi-WAT non-RT controller 

and transport controller. 

 

Figure 2.11 Tentative design for slice manager MF. 

2.3.2.1.3 Example 5G-CLARITY slice and service blueprint and provisioning flow 

To conclude our initial design of the 5G-CLARITY service and slice support system we provide in this section 

a detailed description of how a 5G-CLARITY slice could look like, and we provide a preliminary signalling flow 

illustrating the various phases of the slice provisioning workflow. 

Figure 2.12 illustrates an example 5G-CLARITY infrastructure, hosting two 5G-CLARITY slices, along with their 

associated services. For each slice, the figure highlights the wireless, transport and compute services that 
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compose the slice. 

Starting with the first slice, called “5GCL slice 1” in the legend box in the figure, we see it is composed of: 

 Wireless services: There are three wireless services that are part of this slice. A cellular wireless 

service in the gNB RU+DU radiating PLMNID-XYZ, which in addition includes two 3GPP slices 

identified as S-NSSAI1 and S-NSSAI2. In addition, we have two wireless Wi-Fi services identified with 

SSID-1 and SSID-2, which will connect to the respective S-NSSAIs. Wireless quotas for these services 

can be defined in the gNB for the PLMNID+S-NSSAI pairs, and in the Wi-Fi APs on a per-SSID basis. 

 Compute services:  We see three ETSI network services being part of this slice. NS0 contains the 

control plane functions of the 5GCore and the N3IWF function required to process the traffic coming 

from the Wi-Fi APs. NS1 contains a UPF and an application serving the traffic connected to S-NSSAI1, 

and NS2 contains a separate UPF and another application serving the traffic connected to S-NSSAI2. 

Three separate compute chunks have been set up to guarantee compute resources for each of these 

network services. 

 Transport Services:  There is a long list of transport services, identified with a VLAN, required to 

implement the connectivity between the wireless and the compute services of this slice. First, we 

see vlan11 that is used to connect the control plane traffic from the RAN cluster to the 5GC control 

plane components in NS0. Also, from the RAN cluster we see vlan21 and vlan31 that carry user plane 

traffic towards the UPFs belonging to each S-NSSAI connecting with NS1 and NS2. From the Wi-Fi AP 

we see two additional VLANs, namely vlan20 and vlan30, which connect the traffic from SSID-1 and 

SSID-2 to the N3IWF function in NS0, from which traffic is then diverted to the appropriate network 

service NS1 or NS2. Finally, there are two additional transport services vlan22 and vlan32 used to 

differentiate the traffic destinated to S-NSSAI1 and S-NSSAI2 in the mid-haul segment. Notice that in 

the mid-haul segment user plane traffic is encapsulated in a GTP tunnel between the gNB-DU and 

the gNB-CU in the F1 interface. In this interface traffic from individual users can be distinguished 

looking at the GTP Tunnel Endpoint Identifier (TEID) field. Thus, a software bridge with GTP 

capabilities could be used in the gNB-DU to push the correct VLAN based on the GTP TEID field. 

A similar analysis can be carried out for slice 2, called “5GCL slice 2” in the legend box in Figure 2.12 to identify 

its components wireless, compute and transport services. In this case this slice only has one S-NSSAI and one 

SSID radiated in the venue, and two component network services sharing resources inside the same compute 

chunk. Unlike the first slice, the second one does not implement a full 5GC, but instead it relies on an MNO 

to provide the full 5GC functions. Inside the venue the second slice only features a first network service with 

an N3IWF used to process the Wi-Fi traffic and a virtual gateway function to connect to the MNO where the 

5GC control plane resides, and a second network function featuring the UPF and an application function used 

to process the traffic. 

As we can see from the provided example a 5G-CLARITY slice and the services that the slice supports require 

a complex configuration of physical network functions (wireless and transport) and virtualized network 

services. Figure 2.13 provides a tentative signalling flow illustrating how slices can be provisioned by the MFs 

in the 5G-CLARITY slice and service support system. 
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Figure 2.12 Example of a 5G-CLARITY deployment containing one 5G-CLARITY slice with 2 NSSIs for the private 

operator and one 5G-CLARITY slice with one NSSI from an MNO.  

 

 

Figure 2.13 Tentative message flow to provision a 5G-CLARITY slice.  

To provide a 5G-CLARITY slice, several phases must be performed by the 5G-CLARITY management 

architecture. These phases are depicted in Figure 2.13 and defined below:  

 Phase 1. Preparation phase: occurs before a 5G-CLARITY consumer (i.e., the private owner, the public 
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network or a third party) requests a 5G-CLARITY slice. This phase includes the registration of 
infrastructure resources in 5G-CLARITY platform. 

 Phase 2. Instantiation and Configuration Phase: starts when a 5G-CLARITY consumer requires a 5G-
CLARITY slice with specific requirements. This phase comprises of, a) browse the available 
infrastructure and select the nodes from the 5G-CLARITY dashboard; b) check the deployment 
feasibility of the 5G-CLARITY slice; c) create chunks of components and assigns quota to each created 
chunk, including the onboard of the correspond NSs; d) the configuration at application level of the 
NFs (i.e., those implemented as VNFs within the deployed NSs and the APs implemented as PNFs) to 
provide the 5G-CLARITY slice the desired configuration; and e) finally, the 5G-CLARITY slice is 
activated. This means the 5G-CLARITY slice is ready to be consumed.  

 Phase 3. Provisioning of NSs: network services and application related services can be deployed over 
the activated slice. 

Focusing on Phase 1, the entities involved are the slice manager and external entity. The role of external 

entity could be taken by the private owner (i.e., slice as private network operator internals), by the public 

operator, or by a third party (i.e., network slice as a service). The first step is that the slice manager registers 

the infrastructures through the 5G-CLARITY platform, and the second step is to make them available for the 

external entity. 

In Phase 2, the external entity requests the specific 5G-CLARITY slice. In this step Slice Manager derive the 

transport node required to interconnect the 5G-CLARITY compute services with the 5GNR/Wi-Fi/LiFi APs 

providing the wireless services. In this procedure, the VLAN tags used in the 5G-CLARITY transport service 

are created. After this procedure, the Slice Manager communicates these parameters to the transport 

network Manager, which is responsible for properly configure the Ethernet switching devices. At this point, 

the 5G-CLARITY transport service is created. After that, the Slice Manager must communicate with the VIM 

to reconfigure the access points of each 5G-CLARITY compute service according to the created 5G-CLARITY 

transport service. When the transport and compute services of the 5G-CLARITY slice are created, the NFs 

(i.e., implemented as VNFs or PNFs) must be configured at application level. In the case of the constituents 

VNFs of each 5G-CLARITY compute service, software-related parameters will be configured. In the case of 

5GNR/Wi-Fi/LiFi used in each 5G-CLARITY wireless service, the 5G-CLARITY wireless quotas as well as the 

supported S-NSSAIs and PLMN IDs/SSIDs will be configured. Finally, the Slice Manager instantiates and 

configures v5GCore associated to the PLMNID in the VIM. At this point, the 5G-CLARITY slice is ready to be 

operating. Therefore, the Slice Manager notifies the external entity (i.e., in turns, it will forward it to the 

network slice consumer) that the 5G-CLARITY slice is active. 

Finally, in Phase 3, the service descriptor should be Instantiated in the NFVO by the Slice Manager. In this 

case, the NS descriptor (NSD) will be used by the NFVO to deploy the network service. During this procedure, 

the NFVO interacts with the VIM to allocate the virtualized compute, networking and storage resources 

required by the NS instance. 

2.4  Multi-domain telemetry 

 State of the art 
ETSI ISG ENI defines how AI can be usefully applied in telecommunication networks to support the 

management objectives of operators [67]. These include making management faster, more efficient and 

providing higher resilience and reliability of the infrastructure and of the services delivered to end-users. 

ETSI ENI considers number of technical factors that are needed to be taken into account to determine the 

degree of AI based autonomy in a network and one of these technical factors is network telemetry. Following 

table describes levels of device awareness and examples of telemetry being collected.  
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Table 2-5: Data Collection and Awareness Parameters 

Level  Device Awareness  Example Telemetry 

Level 1  Single device and shallow awareness  SNMP events and alarms are collected 

Level 2  Local awareness SNMP events, alarms, KPIs, and logs are collected 

Level 3  Comprehensive awareness Telemetry data is collected 

Level 4  Comprehensive and adaptive sensing  
Data collected is compatible with data compression and 

optimization technologies 

Level 5  Data-based adaptive posture awareness Edge data collection and judgment based on data 

Level 6  
Data-based adaptive optimization upon 

deterioration  

Edge closed-loop processing, including collection, 

judgment, and optimization 

To increase the level of autonomy in the networks, telemetry frameworks are required to evolve and to 

support complex multi-domain scenarios. This section provides a view of what components are needed to 

be able to support multi-domain AI based optimizations in the network. In this context:  

 non-RT (non-RT) telemetry includes collection and processing of measurements and data from 

network and end-user equipment that has no immediate consumers.  Non-RT telemetry may include 

system state, logs, configurations, or other text / binary data. Some of the telemetry may be 

unstructured and stored as it has been received and other telemetry may be strictly based on 

standard models.  

 Real-time telemetry means collection of measurements or other data in real-time at remote nodes 

and automatic transmission of the data. The nodes are transmitting real-time telemetry to peer 

nodes deployed either at the edge or at cloud. Real-time telemetry may be consumed also by non-

RT functions, for instance in a data lake scenario.  

 Multi-domain telemetry consists of non-real time and real-time telemetry that is collected from end 

user devices or network devices across multiple network domains. Table 2-6: Multi-Domain 

Telemetry Categories categorizes the sources of multi-domain telemetry.  

Table 2-7 surveys cloud native components for telemetry available in the SotA that can be used to address 

the telemetry categories introduced above.    

Table 2-6: Multi-Domain Telemetry Categories 

Category Examples 

Measurements 
Measurements originating from UEs, network statistics, RAN measurements (real-time or 

logged). 

Configurations 
Real-time or non-RT configurations per each infrastructure or system node. Configurations 

may be either structured or unstructured (e.g. when stored to data lake). 

Logs 

State transformations of a node or an application. Errors, Network Node configurations, 

Orchestration configurations from single nodes. Logs may be either structured or 

unstructured. 

Tracing 

Tracks configuration changes across multiple infrastructure / VNF nodes. Different from 

logs, traces provide more detailed information to debug the issues/problems and can be 

collected via pub-sub system where data consumers are collecting a trace from data 

pipeline.   

System Monitoring 

Telemetry 

Infrastructure as well as network functions are monitored to generate alerts when the 

system is not operating within the limits it has been set.  

Telemetry Pipeline Component of the telemetry system that transmits multi-domain stream or batch telemetry. 
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Table 2-7: Cloud Native Products for Telemetry Collection 

Product Category Features 

Prometheus Monitoring Prometheus's main features are: 

 a multi-dimensional data model with time series data identified by metric 

name and key/value pairs 

 PromQL, a flexible query language to leverage this dimensionality 

 no reliance on distributed storage; single server nodes are autonomous 

 time series collection happens via a pull model over HTTP 

 pushing time series is supported via an intermediary gateway 

 targets are discovered via service discovery or static configuration 

 multiple modes of graphing and dashboarding support 

 federation of Prometheus servers 

Apache 

Kafka 

Telemetry 

Pipeline 

Kafka provides three main functions  

 Publish and subscribe to streams of records 

 Effectively store streams of records in the order in which records were 

generated 

 Process streams of records in real time 

Grafana Monitoring  Grafana allows you to query, visualize, alert and understand your metrics no matter 

where they are stored. Create, explore, and share dashboards with your team and 

foster a data driven culture. Main features: Visualization, Dynamic Dashboards, Ad-hoc 

log queries, log search, log alerts, GUI for rules and data source plugins.  

Fluentd Logging Fluentd is an open source data collector, which lets you unify the data collection and 

consumption for a better use and understanding of data. Fluentd supports large 

number of off-the-shelf plugins for variety of systems.  

Jaeger Tracing Jaeger, is a distributed tracing system. It is used for monitoring and troubleshooting 

microservices-based distributed systems, including: 

 Distributed context propagation 

 Distributed transaction monitoring 

 Root cause analysis 

 Service dependency analysis 

 Performance / latency optimization 

AWS 

 

Cloud 

Platform 

 

AWS is a cloud computing platform provided by Amazon. It comprises an excess of 175 

services, which includes computing, networking, storage, database, analytics, IoT. 

Additionally, AWS services can be accessed using APIs, such as HTTP using the RESTful 

APIs. 

Next, we provide a SotA review on two telemetry components that are key to the 5G-CLARITY system, namely 

data lake technologies and streaming telemetry. 

 Data lake technologies 

A data lake is an architectural pattern of large data repository that allows storing of structured and 

unstructured data and is scalable based on user needs. The data can be stored based on organizational needs. 

Data Lake combines a large-scale storage repository with a variety of high-performance processing engines 

that are usually virtualized. Large scale and independent scalability of processing and storage allows data 

lakes to store data as it is produced without pre-processing and processed it on-access. This approach allows 

flexible usage of produced data and it enables organizations to run different types of analytics from 

dashboards and visualizations to big data processing, real-time analytics, and machine learning. Some 



D4.1 – Initial Design of the SDN/NFV Platform and Identification of Target 

        5G-CLARITY ML Algorithms 

49 
5G-CLARITY [H2020-871428] 

functions of data lakes are: 

 Data Lakes allow data-based access controls which enables multiple roles within the same 

organization or external organizations to gain access to a specific data for a specific time. For instance, 

in one organization data scientists, data developers, and business analysts can access the same 

underlying data with their preferred tools and frameworks. This includes open source frameworks 

such as Apache Hadoop [68], Presto [69], and Apache Spark [70], and commercial products from 

data warehouse and business intelligence vendors.  

 Data Lakes allow to run analytics without the need to move data to a separate analytics system. 

 Data lakes allow large data storages to be tiered based on access frequency. It is possible to 

implement data access strategies based on tiering for efficiently using storage technologies 

according to the business value or importance of the data. A tiered storage system provides several 

types of storage, for example, SSD disk drives, HDDs and tape storages. In some cases, the tiering 

can be automated based on last data access information and tiering strategies may be based on, 

availability, and performance of the object storage. It is possible to configure storage classes 

configured object level and a single bucket can contain objects stored across data lake. 

 SNMP and streaming telemetry 

The demand for data regarding network state, whether to detect hot spots in the network, or to aid decision 

making on workload placement requires data at a rate that traditional methods cannot deliver. Traditional 

methods of collecting network telemetry data include pull-based mechanisms such as the Command-Line 

Interface (CLI) shows commands, Syslog messages, IP Flow Information Export (IPFIX) notifications, and more 

recently, Simple Network Management Protocol (SNMP) [71]. SNMP protocol addresses the limitations of 

CLI, Syslog and IPFIX protocols (see Figure 2.14 CLI, Syslog and IPFIX.), allowing the collection and aggregation 

of different performance metrics (e.g. availability, throughput, utilization, delay, fault notifications) from a 

wide variety of devices, based on the simple installation of appropriate SNMP agents atop them. This feature 

makes SNMP ideal for use in heterogeneous networks, typically consisting of devices deployed across 

different technology domains and provided by different vendors. Indeed, SNMP has replaced CLI, Syslog and 

IPFIX in today’s commercial TCP/IP networks, becoming the de-facto solution for data collection and 

aggregation in multi-technology, multi-vendor network environments.  

 

Figure 2.14 CLI, Syslog and IPFIX. 

Every network management system primarily uses today SNMPv3. This protocol version leverages on 

traditional SNMP model, which defines two entities that work in a client-server mode:  

 The SNMP agent (i.e. SNMP client), located on every device that needs to be monitored. The 

software implementing the SNMP agent consists of three main artifacts: i) the SNMP transport 

protocol stack, used for client-server communication; ii) the SNMP agent engine, processing client 

requests and formatting data; and iii) the agent profile, providing rules that control access to 
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Management Information Base (MIB) [72] variables and manage which client requests are 

authorized.   

 The SNMP manager (i.e. SNMP server), installed in the operator’s network management system.  

The SNMP manager job is to acquire information from the different devices connected to the 

network, collecting data from their individual SNMP agents. These data include performance metrics, 

exchanged between the SNMP manager and the SNMP agents using SNMP request-response 

messages, and event notifications, sent from individual SNMP agents to the SNMP server in form of 

SNMP traps. These traps are asynchronous, unacknowledged alert messages that are used to inform 

the SNMP manager when an important event (e.g. failure) happens at the SNMP agent level. The 

SNMP manager software includes, i) a database, used to store collected data; ii) the SNMP transport 

protocol stack; iii) the SNMP server engine, which is the kernel of the SNMP, managing all the tasks 

like an orchestral chief; and iv) a set of agent management profiles, providing rules that define how 

to access to the different agents, and that helps the SNMP manager to build the topology map. 

The ways of working in SNMP are illustrated in Figure 2.15. The SNMP agent listens to request coming from 

the SNMP manager on the UDP port 161, while the SNMP manager listens to alarms “TRAP” coming from 

the agent on UDP port 162. 

 

Figure 2.15 SNMP protocol. 

Despite the wide adoption of SNMPv3, this solution has some limitations that are inherent to the polling-

based techniques. Some of these are described below: 

 Lack of automation. Under the poll-based mechanism, the devices send data only when requested 

by a client. In SNMP, this requires selecting SNMP agents and metrics to poll, setting polling intervals, 

etc. All of these actions require human intervention.  

 Slow reaction capabilities. When using SNMP, for instance, changes that occur between a polling 

interval are discovered only after the next polling. SNMP polling intervals are typically in the order 

of 5-10 minutes, which is unacceptable in operational networks when thousands of events can occur 

in the interim.  

 Lack of useful data. The SNMP protocol does not allow collecting all relevant information of every 

device, preventing the SNMP manager to have a full picture of the network status. This is because 

some device information is not stored in the MIB, and therefore it is accessible only using CLI 

command. Additionally, SNMP protocol does not allow collecting historical routing information 

either, thus leaving a gap into routing changes in the network.  
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 Strict semantics. SNMP has tight ordering and very limited extensibility. 

 Scalability burdens. In large-scale networks, the sheer number of devices the SNMP manager has to 

poll and the volume of data it has to process causes overloads in the operator’s network 

management system.  

The above limitations make SNMP (and in general any poll-based mechanism) inappropriate for beyond 5G 

networks, where operators require near-RT access to operational statistics from a wide variety of devices is 

required. Thus, SNMP-based network monitoring is long overdue for an upgrade, requiring operator to find 

alternative solutions. In this regard, a new paradigm has emerged, i.e., streaming telemetry.  

Streaming telemetry represents a new approach for network monitoring whereby the required data can be 

‘streamed’ automatically and continuously from various network devices, without the need for any polling. 

Streaming telemetry builds on two main pillars: 

 near-RT network data achieved with push-based data collection. Unlike polling, this mechanism 

allows pushing data from the device to an external collector at a much higher frequency and more 

efficiently. This collector is integrated in the operator’s network management system.  

 The use of data model to configure and manage individual network devices in a programmatic way. 

With this model, network devices can be configured with the type of data to be collected, the 

frequency of collection, and where it should be sent. Telemetry data is typically described using 

YANG [73], a structure data modelling language, encoded in JSON, XML or Google Protocol Buffers 

(GPB), and streamed over NETCONF [74], RESTCONF [75] or gRPC [76]. For more information, see 

Figure 2.16.  

The basic operation of streaming telemetry is shown in Figure 2.17. In order to stream data from a given 

device, the collector must set up a ‘subscription’ to a data set in a YANG model. A subscription represents a 

contract between a subscription service and a subscriber that specifies the type of data (i.e. data items) to 

be pushed. The subscription allows the collector (i.e. subscriber) to subscribe to data models and device (i.e. 

publisher) to push the data to the collector for the subscribed model.  

With this mechanisms, streaming telemetry enables access to real-time, model-driven, and analytics-ready 

data that can help with network automation, traffic optimization and preventive troubleshooting in large-

scale networks. To allow operators to fully exploit these features into their managed networks, typically 

consisting of multiple devices using multiple technologies and provided by different providers, telemetry 

streaming needs to be accompanied with a highly scalable architectural frameworks, with more data point 

granularity and superior performance. Examples of these frameworks are shown in Figure 2.18. On the left 

side (Figure 2.18a), the ETSI ISG Context Information Management (CIM) architecture is represented. This 

architecture allows addressing what today is a hindrance to the widespread adoption of massive IoT services, 

i.e., the lack of open and standardized approach for the exchange of context information. To this end, ETSI 

ISG CIM defines an open framework based on the use of RESTful APIs named NGSI-LD for a consistent, cross-

cutting context exchange [77]. For more information on NGSI-LD protocol and how streaming telemetry can 

be applied therein, see [78]. On the right side (Figure 2.18b), there is the IETF-defined Service Assurance for 

Intent-based Networking (SAIN) architecture [79]. This architecture makes use of telemetry data streamed 

from multiple devices to get the assurance of healthy services running atop.   
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Figure 2.16 Telemetry data protocol stack. 

 

Figure 2.17 Basic operation of streaming telemetry. 

 

Figure 2.18 Examples of architectures for streaming telemetry applicability. 

 Initial design of 5G-CLARITY data processing and management subsystem 

Based on the SotA technologies described in the previous section, now we present an initial design of the 

5G-CLARITY Data Management and Processing subsystem that will be developed in WP4. Figure 2.19 

describes the overall architecture of this 5G-CLARITY subsystem, including two main components, i) the Data 

Semantic Fabric; and ii) the Data Lake.  

The Data Semantic Fabric provides a model-based telemetry framework for data aggregation in distributed, 

multi-domain environments. This framework leverages two key functionalities. On the one hand, the ability 

to apply a semantic model to telemetry data collected from multiple sources. This model allows providing a 

complete description of data flows, including the identification of data sources and data consumers, and 
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their relationships with the rest of elements in the flow. On the one hand, the ability to combine individual 

data and process them according to predefined rules, in order to make data available for consumption. The 

focus of the Data Lake is to centralize the data management and allow virtual unlimited data storage allowing 

a cost-effective management of data and its access.  

As shown in Figure 2.19, the Data Semantics Fabric communicates with the Data Lake for the purposes of 

data storage and data collection. In the first case, the Data Semantic Fabric dispatches aggregated data to 

the Data Lake’s storage system, from which it can be read later on by corresponding data consumers. Service 

and slice provisioning MFs (5G-CLARITY management and orchestration stratum) and AI engine (5G-CLARITY 

intelligence stratum) are examples of clients that may gain access to the Data Lake to consume the stored 

aggregated data. In the second case, the Data Semantic Fabric uses the Data Lake as another data source. By 

modelling Data Lake’s storage system as a database, the Data Semantic Fabric can fetch necessary data, using 

it for aggregation with other data sources.   

Figure 2.19 also highlights the multi-domain nature of the 5G-CLARITY system, where data may originate 

from different sources, including WAT nodes (5G-CLARITY infrastructure stratum), compute and transport 

nodes (5G-CLARITY infrastructure stratum) and VxFs (5G-CLARITY network and application function stratum).  

Detailed description of the internal components 5G-CLARITY Data Processing and Management subsystem 

are presented in the following sections, i.e., leveraging the ability to obtain real-time multi-WAT telemetry 

data in Section 2.4.2.1, the Data Semantic Fabric in Section 2.4.2.2 and the Data Lake in Section 2.4.2.3.   

 

 

Figure 2.19: Data processing and management subsystem. 

 5G-CLARITY approach to collect multi-WAT telemetry 

A central aspect to fulfil the 5G-CLARITY vision is to be able to extract near real time metrics about the 

wireless access technologies that compose the 5G-CLARITY network, namely 5GNR, Wi-Fi and LiFi. These 

metrics are essential for example for the operation of some of the ML based algorithms introduced in Section 

5 Obtaining RAN information is however a complex task in real networks because interfaces offered by 

equipment vendors are generally proprietary. To address this problem, in 5G-CLARITY we make use of the 

near-RT RAN Intelligent Controller (RIC) concept proposed by O-RAN, which has been introduced in 5G-

CLARITY D3.1 [3]. O-RAN defines an interface called E2 between the RT RIC and the Central Unit (CU) 

functions, which allows to retrieve radio information from the UEs connected to the gNB. The RIC 

implementation in 5G-CLARITY will be based on the dRAX product from ACC, which offers a data bus based 

on a pseudo-E2 interface that allows different xApps to publish and subscribe to relevant information. dRAX 

will enable the easy lifecycle management and access to telemetry of the xApps developed in 5G-CLARITY. 

In this sense a “multi-WAT KPI xApp” will be developed that collects measurements on a per-slice basis and 

delivers them to the DSE component of the overall 5G-CLARITY telemetry system. A similar “enhanced AT3S” 

xApp will be developed as described in 5G-CLARITY D3.1 [3] that will use multi-WAT telemetry data to control 
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the weights and policies of the different multi-WAT flows.  

One aspect that is not covered in O-RAN is how to integrate telemetry from non 3GPP technologies. In this 

regard, 5G-CLARITY will demonstrate a novel solution that will use Prometheus to collect Wi-Fi and LiFi 

telemetry and then an adapter to publish the metrics into the dRAX data bus. In this way both the 3GPP and 

non-3GPP radio metrics will become available to the multi-WAT KPI xAPP. Figure 2.20 depicts the proposed 

multi-WAT telemetry architecture, which will be hosted in the RAN compute cluster described in 5G-CLARITY 

D2.2 [2]. 

 

Figure 2.20. 5G-CLARITY approach to multi-WAT telemetry. 

 5G-CLARITY data semantic fabric 

The streaming telemetry principles described in Section 2.4.2.1 will be applied in the design of the data 

semantics fabric. This fabric, which builds up the 5G-CLARITY data pipeline, allows consolidating data from a 

wide variety ‘sources’ and turn them into useful information for ‘consumers’, by applying necessary 

processing on the collected data before their transmission and storage. For an effective data ingestion, the 

5G-CLARITY data pipeline includes a set of logical nodes depicted in Figure 2.21, each with a well-defined 

functionality:  

 Collector, responsible for data harvesting.  

 Aggregator, in charge of manipulating and combining individual data collected together, making 

them available for their consumption. This processing is done according to some rules (e.g. 

arithmetic operations, filtering, thresholding).  

 Dispatcher, which sends aggregated data out to the target destination. This destination is where the 

data is stored for their consumption.  

Given the above, we can see that streaming telemetry applies to the collector. Examples of sources from 

which the collector can retrieve data include infrastructure equipment (e.g. network devices, compute 

nodes), instances of manageable network entities (e.g. network slices/services, VNFs, probes) and databases. 

Every data source has associated a well-defined class, which provides a complete description of this source. 

A class consists of two types of information:  

 Endpoint of the source, including the URI (e.g. path, host, port) and the corresponding credentials 

(e.g. user, password, method). This information allows the collector to establish a subscription with 
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the source.   

 The data items (e.g. in-octets, in-pks, in-unicast-pkts, MTU size) that can be retrieved from this 

source by a subscribed collector. These data items, which convey the semantics of the data source, 

are typically structured into a standards-based YANG model. YANG is a data modelling language 

based on the structure of management information, next-generation system, being used to model 

semantics and organization of configuration and state data manipulated by the NETCONF protocol. 

To retrieve data from a source, the collector subscribes to specific data items it needs, by using the 

YANG model embedded in the class. Figure 2.22 illustrates the class of a typical YANG-based network 

device.  

Finally, an initial set of telemetry data sources to be integrated with the Distributed Streaming Telemetry 

Pipeline have been already identified and are listed in Table 2-8. 

 

Figure 2.21: Data semantic fabric. 

 

Figure 2.22: Information model of a YANG-based device. 
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Table 2-8: Telemetry Data and Corresponding Data Sources in 5G-CLARITY 

Telemetry Data Data Source Comments 

multi-WAT telemetry including 

5GNR, Wi-Fi and LiFi 

dRAX xAPP described in Section 

2.4.2.1 

Open source telemetry framework will be 

used (e.g. Prometheus) 

L2-based network telemetry SDN controller Through controller NBI offered APIs 

 Individual network devices Devices with in-built NETCONF server 

NFVI telemetry OSM mon-collector  
Collects data from VIM’s telemetry system, 

e.g. OpenStack Ceilometer  

VNF telemetry OSM mon-collector Collects data from OSM’s N2VC, based on Juju  

E2E measurements AT3S 

In case MP-TCP is used to implement the AT3S 

user plane function, then MPTCP E2E 

performance metrics are available [80] 

5GC analytics NEF Secure exposure of NWDAF provided data  

CPE telemetry CPE device   

 

 5G-CLARITY cloud-based solution for multi-WAT telemetry 

Analysing large data comes with a number of challenges, which include infrastructure, cost, storage and 

security. One solution to these challenges relies on cloud computing, which migrate the in-house 

infrastructure requirement to an external platform. In this section, we propose a cloud-based approach for 

handling multi-WAT telemetry, which is based on the AWS platform. This approach is complementary to the 

solutions presented in Sections 2.4.2.1 and 2.4.2.2. 

AWS is a cloud computing platform provided by Amazon. It comprises a multitude of services, which includes 

computing, networking, storage, database, analytics and IoT. The bulk of AWS services lie in the background 

and are not exposed to the consumer, they can avail these services only through API calls.  

Figure 2.23 illustrates the overall framework of the cloud-based solution targeted in 5G-CLARITY. The 

framework consists of two logical layers, namely the network layer and the computing layer. The computing 

layer is composed of different computing tiers, namely, the central cloud and the edge cloud connecting to 

the RAN or core, while the network layer is depicted using and E2E multi-WAT network.  

This solution extends the telemetry handling to the cloud side via an edge premises. To expound further, the 

edge shown in Figure 2.23 forwards the incoming telemetry from the available wireless access technologies, 

such as Wi-Fi, LiFi and 4G/5G, towards the AWS cloud. In one exemplary scenario, this may be carried out 

using the Greengrass service, which is an AWS service that extends AWS to edge devices so they can act 

locally on the data they generate and use the cloud for management, analytics and durable storage.   

The incoming telemetry is monitored both at the edge and the cloud side using AWS Rules. The AWS Rules 

incorporates a set of predefined and customizable rules, which allows triggering some functions defined in 

the Lambda Functions service. For example, a rule can be defined to trigger a Lambda function that forwards 

an incoming telemetry from, say, a Wi-Fi access technology to a specific AWS service.  

Additionally, the incoming telemetry data stream can be connected to a Kinesis Data Firehose service, which 

is a data streaming service equivalent to the Kafka service employed in Section 2.4.2.1. The Kinesis Data 

Firehose service loads streaming telemetry data into a storage space, particularly the Simple Storage Service 

(S3) storage service shown in Figure 2.23. The S3 storage service offers industry-leading scalability, data 

availability, security, and performance. In the context of 5G-CLARITY, this would be the main storage bucket 

for all the received telemetry. This storage can be also accessed by other tools, such as analytics tools and 
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ML-based applications.  

Telemetry is typically communicated using the JSON format. One JSON-based format referred to as the Signal 

Metadata Format (SigMF) specifies a way to describe a real or complex time series signal, with one or more 

non-continuous captures, using metadata written in SigMF compliant JSON. SigMF can be used to describe 

general information about the equipment and method used for collection of samples, the characteristics and 

parameters of the system that recorded the samples, and features of the signal itself.  It is intended to be 

generally applicable to signal processing, regardless of whether or not the application is communications 

related with the goal of providing a standard for time-series data that will be useful regardless of tool or 

workflow.  

The SigMF specification fundamentally describes two types of information: datasets, and metadata 

associated with those datasets. Taken together, a dataset with its SigMF metadata is a SigMF Recording. 

Metadata describes the dataset with which it is associated. There is a one-to-one mapping between SigMF 

data files and SigMF metadata file.  The metadata includes information meant for the human users of the 

dataset, such as a title and description, and information meant for computer applications (tools) that operate 

on the dataset. A SigMF Recording consists of two files, i.e., a SigMF metadata file; and a dataset file. The 

dataset file is a binary file of digital samples, and the metadata file contains information that describes the 

corresponding dataset file.  

 

Figure 2.23 5G-CLARITY overall cloud-based solution for multi-WAT telemetry. 
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 Integration between Private and Public Networks 

A key feature of 5G-CLARITY system is the ability to facilitate private-public network integration, thereby 

allowing the realization of PNI-NPNs. A PNI-NPN is an E2E network composed of two networks: one private, 

consisting of VxFs that are provided by the private NOP; and one public, consisting of public VxFs that are 

provided by the public NOP. While private VxFs are typically executed on 5G-CLARITY infrastructure, public 

VxFs can be deployed using either 5G-CLARITY resources (i.e. on-premise resources) or PLMN resources (i.e. 

off-premise resources). 

Based on the above rationale, it is clear that both the private NOP – responsible for providing private VNFs 

and managing 5G-CLARITY resources - and the public NOP – responsible for providing public VNFs and 

managing PLMN resources – play a key role in the provisioning of a PNI-NPN. To ensure a unified operation 

of this E2E network, it is thus required that the management systems of both NOPs interact with each other, 

exchanging trusted and verifiable messages between them. To facilitate the interaction between these 

systems, namely the 5G-CLARITY management and orchestration stratum (managed by the 

private NOP) and the 3GPP management system (managed by the public NOP), the network service 

aggregator role provides mechanisms leveraging on two key functionalities: capability exposure and 

auditability.  

A first analysis on these functionalities were conducted in 5G-CLARITY D2.2 ([2], Section 9.3), leveraged from 

which this section delves into capability exposure functionality. In particular, the applicability of this 

functionality to relevant 5G-CLARITY service models, including WATaaS, NFVIaas and SlaaS (see 5G-CLARITY 

D2.2 [2], Annex B) are studied. The result of this study will be the identification and characterization of 

different management models, each providing a different interaction between 5G-CLARITY management 

system and 3GPP management system. Individual management models will be linked to real-world use cases 

to illustrate their usability. Further refinements of these management models and an initial design of 

auditability mechanisms will be specified in 5G-CLARITY D4.2.    

3.1 5G-CLARITY slice management models 

As introduced in 5G-CLARITY D2.2 the management system shall support a variety of management models. 

We discuss in this section how the 5G-CLARITY management framework will support each of these models, 

and when required how it will integrate with management systems of public networks. 

The description of the management models relies on key definitions and concepts introduced in 5G-CLARITY 

D2.2. One is related to the characterization of the deployment scenarios, where a particular management 

model may be applicable or not. A deployment scenario can be identified by the number and type of actor 

roles, e.g. Network Operators (NOPs), service providers (SPs) or aggregators (AGGs). The actor roles involve 

different responsibilities regarding operations. In the context of 5G-CLARITY, they also determine the 

presence of both public and private administrative domains. 

Another key feature of the deployment scenarios is related to the offered services. The 5G-CLARITY slice is 

defined as a concatenation of wireless, compute and transport services. The nature of the offered service 

(i.e. private or public) is another aspect that is representative from a business viewpoint. Accordingly, 5G-

CLARITY infrastructure services can be intended for private use, such as an Industry 4.0 ultra-reliable low-

latency service, or public use, such as mobile broadband for ultra-high definition video streaming. 

Lastly, multiple service delivery models can be defined between different administrative domains, 

determining the interaction of actors from public and private domains in a given scenario. 3GPP has defined 

two main service delivery models for network slicing [81]: network Slices as NOP internals, where the 

existence of the network slices is transparent to the customer; and Network Slice as a Service (NSaaS), where 
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the network slice is offered as a communication service to the customer.  

5G-CLARITY ecosystem opens doors to a great variety of service delivery models, whhich go well beyond 

3GPP scope: WAT as a Service (WATaaS), NFV Infrastructure as a Service (NFVIaaS) and Slice as a Service 

(SlaaS). For example, the WATaaS model is an adaptation of the existing neutral hosting model, whereas the 

NFVIaaS model is used to make a virtual infrastructure available for VNF/VAF hosting. Finally, the SlaaS model 

is about making a 5G-CLARITY slice (i.e. on-premise infrastructure slice) available for a 5G-CLARITY tenant, 

so he can consume in their own administrative domain as desired.   

To make services available for customer consumption, the above service delivery models leverages on the 

capability exposure. Capability exposure can be defined as the ability of a service provider to expose 

management capabilities to an authorized customer in a secure way. Management capability exposure in 

multi-tenant environments like the 5G-CLARITY brings some implications, particularly considering that 

different tenants could want to have different levels of management over their serving slices. This fact makes 

necessary to define different levels of exposure [2]. Looking at the literature, the 5G-VINNI project has 

proposed a level-based framework for capability exposure [82]. This framework lies on the definition of four 

capability exposure levels, each allowing the tenant to get a different set of operational capabilities from the 

service provider. As can be seen in Figure 3.1, the selection of one or another level allows a tenant to 

consume more or less capabilities from the management functions residing in the provider’s administrative 

domain. For example, the first exposure level (i.e. the tenant retains control of network slice application 

layer configuration and management) only allows to the tenant to gain access to the E2E related 

management functions. However, if level 4 (i.e. the tenant retains control of virtualized resource control and 

management, scoping NFVI with optional Enhanced Platform Awareness (EPA) capabilities and 

infrastructural SDN control) is selected, then tenant can gain access up to the VIM. In other words, the tenant 

can consume operations and data offered not only by the VIM (level 4), but also by the NFVO (level 3), the 

management functions from individual network domains (level 2) and the E2E related management 

functions (level 1).  

 

Figure 3.1: Mapping 5G-VINNI exposure levels into consumable capabilities in a baseline telco management and 

orchestration system. 

In 5G-CLARITY, we firstly define the management model for the customer-facing and resource-facing services 

of a 5G-CLARITY facility infrastructure. Such models can be used for managing the exposed services according 

to the service delivery models (i.e. WATaaS, NFVIaaS and SlaaS). Then, we illustrate the use of the 

management models in some example deployment scenarios, together with the management entities that 

allow such exposure levels and interactions between actors from public and private domains. The role of the 

network service aggregator is also essential for this analysis since it determines how the federation is carried 
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out between public and private domains. 

Table 3-1 describes the management models (MMs) defined in 5G-CLARITY for each service. This definition 

is made under two assumptions. One is that higher exposure levels mean more advanced management 

capabilities. The other statement is that the management capabilities exposed by a certain level also contains 

those capabilities offered by the lower levels. For the sake of readability, we use the notation x.MMy, where 

x represents the service (or the service delivery model) and y stands for the level of management capability 

exposure for that service. For each management level, the table describes which capabilities are available 

for the tenant and how much effort is expected for the service provider (SP) to manage the infrastructure. It 

is observed that the 5G-CLARITY transport service has not associated a service delivery model in the same 

way as other services (e.g. WATaaS, NFVIaaS). However, this service is offered indirectly as part of the SaaS 

model. When 5G-CLARITY offers an SlaaS, it is guaranteed a transport quota that enables the connection 

between the different services the slice is composed of (the transport service is responsible for the 

connection of the wireless and compute services). 

Then, it is worth mentioning that while the NFVIaaS allows the tenant to extend its footprint, the SlaaS 

provides to the tenant a full slice that it can use to extend a certain functionality. 

Table 3-1 Description of 5G-CLARITY Management Models. 

Service 

Related 

Service 

Delivery 

Model 

Mgmt. Level Description 

5G-CLARITY 

Wireless 

Service 

WATaaS WAT.MM1 
Tenant: manages FCAPS (streaming telemetry and data lake 

access) and the lifecycle of network slices (S-NSSAIs). 

5G-CLARITY 

Compute 

Service 

NFVIaaS 

NFVI.MM1 

Tenant: provides VNFDs/NSDs and software images for Application 

Functions (AFs) and manages FCAPS (streaming telemetry and data 

lake access) 

NFVI.MM2 

Tenant: NFVI.MM1 + management of lifecycle of VNFs/NSs 

(deploy, scale, heal, operate -start/stop/restart/…-, update and 

terminate, policies, etc.), onboarding of VNFDs/NSDs for NFs and 

AFs. The tenant connects to the private operator’s NFVO to 

manage all the features aforementioned. 

NFVI.MM3 
Tenant: NFVI.MM2 + connection to SP’s VIM through its own NFVO 

in order to have increased capability to manage VNF/NS lifecycle. 

5G-CLARITY 

Network 

Slice1 

SlaaS 

SL.MM1 
Tenant: supports the deployment of AFs, including WAT.MM1 (S-

NSSAI LCM) + NFVI.MM1 (VNFDs/NSDs). 

SL.MM2 
Tenant: manages the lifecycle of a 5G-CLARITY Slice, including 

WAT.MM1 + NFVI.MM2 (VNF/NS LCM). 

SL.MM3 
Tenant: it includes WAT.MM1 (S-NSSAI LCM) + NFVI.MM32 

(connection to VIM).  

The three SaaS described management levels in the table above include a guaranteed transport quota 

providing the connection of the different network services that conform the slice offered as a service, as it 

was aforementioned. Furthermore, all these management levels regarding the SlaaS delivery model require 

the interaction between the tenant’s and private operator’s slice managers. 

                                                           

1 For simplicity, only MM levels for internal services to the 5G-CLARITY system are considered here. 
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The application of the management models varies depending on the deployment scenario and the presence 

or not of a public operator. In this way, some representative deployment scenarios have been selected for 

the analysis of the management models. We provide each scenario with a realistic example of a private 

venue (e.g. a factory, a museum, etc.) demanding a 5G-CLARITY facility infrastructure. We also analyse the 

actor roles (including the aggregator), the offered services, the service delivery models and the interactions 

between the different actors, especially public and private operators. 

 Scenario 1: NFVIaaS 

This first scenario, described in Table 3-2 and Figure 3.2, represents the case in which the private operator 

(acting as the SP) offers NFVI as a service to a tenant, being the tenant in this case an MNO. With this service 

delivery model, the MNO can onboard some of its NFs on the private premises with the purpose of extending 

its service footprint and also to reduce latency. The MNO acquires a compute resource quota provided by 

the private operator with the aim of having an isolated execution environment in which the tenant can 

deploy its virtualized network functions (i.e. public network functions are deployed using on-premise 

resources). 

Figure 3.2 illustrates the management and network views for this scenario. The green circle represents the 

service perceived by a tenant. The grey blocks represent the management entities, while the arrows indicate 

an action. This allows to show the different management models that are available in the scenario. In 

NFVIaaS there are different levels of management. Specifically, the MNO can choose between level 1 and 2. 

Whereas the management level 1 allows the tenant only to provide the VNFDs/NSDs and software images, 

with level 2 the MNO can manage the lifecycle of the network services hosted within the private premises 

(see Table 3-1). To do so, the tenant’s MANO is able to connect to the MANO of the SP. 

With the focus on facilitating the management tasks, some associations between the manager entity of the 

service provider and the tenant are required. For instance, there should be a connection between the private 

operator slice manager and the data semantic engine and data lake block to support the telemetry. 

The museum acting as the private operator provisions the MNO with a set of compute resources which 

comprises a 5G-CLARITY slice, which remains inside the premises of the private venue (as it is observed in 

the bottom of Figure 3.2).  

The WATaaS scenario would be similar to this one. In that case, the tenant could choose only one level of 

management, which is the one described in Table 3-1. This service delivery model enables the tenant to 

increase wireless capacity and coverage due to the wireless resources provisioned by the private operator. 

Table 3-2 Description of a Network Scenario Offering NFVIaaS. 

Aspect Description 

Actor Roles 
 NOP+SP: Museum 

 Tenant: MNO 

Services 
Public: 

 MNO reducing latency 

Service Delivery Models  NFVIaaS (Museum  MNO) 

Management Models 

 Museum: NFVI.MMy(SP) 

 MNO: NFVI.MMy(Tenant) 

y ϵ {1,2} 
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Figure 3.2 Management and network views of a scenario offering NFVIaaS. 

 Scenario 2: SNPN & SlaaS (e.g. a fully isolated factory) 

The second scenario is a standalone non-public network, where the private owner offers a slice as a service. 

For example, a factory can offer a slice as a service to the factory Information Technology (IT) department 

that provides for instance virtual reality applications to that department workers (see the complete 

description in Table 3-3). Alternatively, the factory could subcontract the role of operator and provider to a 

micro-operator, or an MNO. In any case, the service delivery model is the 5G-CLARITY SlaaS. As observed in 

Figure 3.3, the slice is a 5G-CLARITY slice because it is fully deployed within the private venue. The green 

circles represent the slice as it is perceived by an actor. Accordingly, the 5G-CLARITY slice is offered as a 

service. The customer sees a slice that contains the whole functionality of a 5G system and is tailored to the 

specific necessities of its offered services. So that, the customer uses it to build a communication service. 

The figure also allows us to show the different management models that are available in the scenario. For 

example, levels 1, 2 or 3 of SaaS can be offered by the factory, which takes the roles of network operator 

and service provider. In the other side, the factory IT department, which uses the same level 1, 2 or 3 

(represented by the letter y), operates as a tenant (that is the SlaaS service customer). 

Some associations between the manager entity of the service customer and the provider are required. In 

particular, there should be a connection between the tenant slice manager with the slice manager of the 5G-

CLARITY system. In addition, there should be a connection with the data semantic engine and data lake block 

to support the telemetry. 

In the bottom of Figure 3.3, the network view represents the 5G-CLARITY slice, whose identification is given 

by a PLMNID-NID, corresponding to a standalone scenario. In addition, all the network elements are within 

the private venue. 

Table 3-3 Description of a SNPN Scenario Offering SlaaS. 

Aspect Description 

Actor Roles 
 NOP+SP: factory 

 Tenant: factory IT department 

Services Private: 
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 Factory IT department providing 

services and applications to workers 

Service Delivery Models  SaaS (factory  factory IT department) 

Management Models 

 Factory: SL.MMy(SP) 

 Factory IT department (tenant): 

SL.MMy(Tenant) 

y ϵ {1,2,3} 

 

 

Figure 3.3 Management and network views of a SNPN scenario offering SlaaS. 

  Scenario 3: PNI-NPN & SlaaS (e.g. a stadium supported by an MNO) 

In this scenario, represented in Table 3-4 and Figure 3.4, the actor setting up the 5G-CLARITY slice is the MNO 

and not the private operator. In particular, the private operator can be the owner of a stadium, the MNO, 

acting as a tenant, can also take the role of aggregator and another tenant can use the service offered by the 

MNO. An example of this second tenant could be a company that provides immersive sports applications to 

fans. 

Looking at the green circles in the figure, the stadium offers a SlaaS using wireless, compute and transport 

services. As a provider, the private operator takes the level 3 of management for SlaaS. The MNO receives 

the 5G-CLARITY slice provided by the stadium and builds a slice including other network functions, for 

example, the 5G-Core. On the top of this slice is where the second tenant (e.g., the AR/VR company, as stated 

in Table 3-4) builds its services. The MNO uses the level 3 of SlaaS from the perspective of the service 

customer. In turn, it offers the new PNI-NPN slice made from the 5G-CLARITY slice to the second tenant using 

the level 1 of SlaaS, which means high effort for managing the slice as a provider. In the other side, the tenant 

utilizes the level 1 of SlaaS taking the role of customer, meaning that the level of exposure is low. Thus, there 

are two service delivery models in the scenario, but only a 5G-CLARITY slice, which takes part of the slice the 

MNO offers to another tenant. In this way, the MNO would require similar capabilities to the 5G-CLARITY 

Slice Manager in order to operate 5G-CLARITY slices. 
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Table 3-4 Description of a PNI-NPN Scenario Offering SlaaS. 

Aspect Description 

Actor Roles 

 NOP+SP: Stadium 

 NOP+Tenant+AGG+SP: MNO 

 Tenant: AR/VR company 

Services 

Private: 

 AR/VR company providing immersive sports applications to fans 

Public (optional, not shown): 

 MNO increasing wireless capacity to meet the demand of public subscribers 

Service Delivery 

Models 

 SaaS (Stadium  MNO) 

 NSaaS (MNO  AR/VR company) 

Management Models 

 Stadium: SL.MM3(SP) 

 MNO: SL.MM3(Tenant), SL.MM1(SP) 

 AR/VR company (tenant): SL.MM1(Tenant) 

 

  

Figure 3.4 Management and network views of a PNI-NPN scenario offering SlaaS. 
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 5G-CLARITY ML Algorithms  

This section describes the machine learning (ML) use cases that are contributed by various partners of the 

5G-CLARITY consortium, including the proposed ML algorithms. 

4.1 Introduction  

The 5G-CLARITY project has a strong focus on leveraging machine learning to support autonomous network 

management from different perspectives. Sections 4.2 to 4.10 describe nine ML use cases from AT3S 

handover to SLA violation and resource provisioning, using a range of ML algorithms that include Support 

Vector Machine and Deep Reinforcement Learning. Because of the sparsity of available suitable training data 

from real networks, some of these algorithms will initially be trained in a simulation-type environment and 

later deployed in the 5G-CLARITY AI engine as ML services that consume data from the 5G-CLARITY Data 

Management component and provide predictions for 5G-CLARITY management and network functions. 

4.2 Predicting SLA violations/success rate  

 Problem statement  

During the evolution of mobile networks, there has been an increasing demand not only on data traffic but 

also on various types of services such as reliability and latency for uRLLC. Each of these services has their 

own requirements that should be satisfied at the same time along with other types of services. As 3G and 

4G networks are designed to accommodate increasing user data demand, satisfying QoS KPIs for different 

services is a challenging task for such dedicated networks. Therefore, 5G networks have been being designed 

in a way that efficiently operates multiple virtual sub-networks that sit on the same physical infrastructure. 

This is known as “network slicing” and has opened various opportunities for new services and use cases for 

MNOs as well as infrastructure owners. An example use case can be that an MNO (public operator) is a tenant 

and leases part of the network infrastructure for a specific time from the infrastructure owner (private 

operator). As this is a business model for both parties, there should be a set of specific business requirements 

that guarantees the capability of a network slice. This is termed as SLA in 5G terminology. As the network 

infrastructure has limited physical resources that are shared by several tenants, its resources should be 

carefully shared to satisfy SLAs. Therefore, network characteristics such as user demand, traffic types, spatial 

load distribution to access nodes and mobility patterns should be forecasted in order to predict possible SLA 

violations or success rate. A probability margin for possible SLA violations or success rate could be used by 

private/public operator to decide whether initiate a service/slice or not.  

 State of the art  

Resource management in a heterogeneous network that provides diverse KPIs for different service types is 

a challenging task due to dynamicity of the network parameters such as channel variations, user mobility, 

load distribution and service variations. This is also the case of SLA monitoring for network slices. With the 

recent advancements on ML and its applications to mobile networks, applying ML methods have become a 

viable option to forecast dynamic network parameters.  

A very first study that uses learning for network traffic prediction is proposed in [83]. The purpose in [83] is 

to investigate spatial and temporal dependencies of network traffic among base stations. For this purpose, 

a hybrid deep learning model that consists of three components namely local and global encoders and long 

short-term memory (LSTM) is used to perform spatiotemporal modelling and prediction of network data 

traffic for each cell. The idea of using LSTM which is a modified version of recurrent neural network (RNN) is 

to consider long-term temporal dependencies by using back propagation. A network slice broker solution 
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that forecasts network capacity and schedules network slice in a way to satisfy SLA is proposed in [84]. 

Different from [83] where the data traffic is predicted on a cell basis, the traffic forecasting process is 

tenant/slice-based in [84]. One of the time series approach named Holt-Winters is used to predict the traffic 

type of the network slices. Once the slice traffic is predicted, an admission control algorithm which is based 

on geometric knapsack problem is run within the proposed network slice broker to either grant the network 

slice request or not according to resource availability. If the slice is admitted by the slice broker, then a multi-

class slice scheduler is used to provide SLA of the slice via online reinforcement learning (RL). The work in 

[84] is extended by including spatial distribution of tenants to the slice forecasting process in [85].  

A deep neural network architecture named DeepCog that considers a cost-aware traffic forecast is presented 

in [86]. The objective in [86] is to maximize revenue of the network operators by reallocating long-term and 

short-term scheduling decisions that would help to reduce demand overprovisioning. Different from the 

noted traffic forecasting studies, DeepCog targets capacity prediction rather than mobile traffic forecast. The 

hyperparameters of the considered deep neural network are tuned via extensive simulations and tests. 

Another deep learning-based approach to provide SLA requirements is proposed in [87]. A soft gated 

recurrent unit (GRU) based traffic prediction is introduced to forecast the network slice traffic. GRU has the 

same objective as LSTM which is to consider long term dependencies. The difference of LSTM and GRU is the 

way both approaches operate. LSTM uses input, forget and output gates, whereas GRU uses reset and update 

gates, hence, simpler than LSTM [88] Once the slice-based traffic is predicted, SLA-constrained deep neural 

networks are used to estimate the required resources to not violate the SLA. A lower bound of the 

convergence probability of the SLA-constrained deep neural network is also provided. 

In 5G-CLARITY, the proposed solution for predicting the network traffic/load for the overall network traffic 

volume and its spatial distribution to cells as well as obtaining the possible SLA violations/success rate 

probability/margin is based on echo state networks (ESNs). ESNs are special class of RNNs and are used to 

learn black-box models of non-linear systems such as the time series prediction tasks, supervised training of 

temporal pattern recognition, pattern generation, prediction, controller and more [89]. They have a non-

trainable sparse recurrent part which is termed as reservoir and a simple linear readout. The input and 

reservoir weights are randomly generated and only the readout from the reservoir is trained [90]. The echo 

state property of ESNs comes from the reservoir in a way that the reservoir exhibits a fading of the input. In 

other words, the reservoir exhibits a short-term memory of the input that can be used to classify dynamic 

patterns. 

 5G-CLARITY initial design  

Let's assume that one of the tenants of the private network operator wants to initiate a slice in the private 

network. Before initiating the slice request, the private network operator may want to predict a possible SLA 

violation/success rate for this service. As noted, the considered ML model for predicting the spatial 

distribution of the network traffic and obtaining the possible SLA violations is based on ESN which is a special 

class of RNN. It is important to note that not every randomly generated RNN has the echo state property of 

ESNs [89]. In order to satisfy the echo state property of the reservoir, the spectral radius of the reservoir 

weight matrix should be smaller than 1 [91].  

 

Figure 4.1: A high-level representation of an ESN architecture. 
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A high-level representation of the ESN architecture is depicted in Figure 4.1 [91]. The ESN architecture 

consists of an input signal 𝐮(𝑛) ∈ ℝ𝑁𝑢, a vector of reservoir activations 𝐱(𝑛) ∈ ℝ𝑁𝑥, an output vector of 

𝐲(𝑛) ∈ ℝ𝑁𝑦  and a desired target output signal of ytarget(𝑛) ∈ ℝ𝑁𝑦  where 𝑁𝑢 , 𝑁𝑥 , and 𝑁𝑦  represent the 

number of elements in vectors u, x, and y/ytarget, respectively; and 𝑛 =  1, . . . , 𝑇 is the discrete time with T 

number of data points. The Win ∈ ℝ𝑁𝑥×(1+𝑁𝑢) , W ∈ ℝ𝑁𝑥×𝑁𝑥  and Wout ∈ ℝ𝑁𝑦×(1+𝑁𝑢+𝑁𝑥)  represent the 

input, recurrent and output weight matrices, respectively. The goal of the ESN is to minimize an error 

measure 𝐸(y, ytarget)  by learning a model that outputs y (n). The error measure 𝐸(y, ytarget)  can be 

obtained as a root mean-square error as: 

𝐸(y, ytarget) =
1

𝑁𝑦
∑ √

1

𝑇
∑ (𝑦𝑖(𝑛) − 𝑦𝑖

target
(𝑛))

2𝑇

𝑛=1

𝑁𝑦

𝑖=1

. 

The ESN state update equation can be written as: 

𝐱(𝑛) = (1 − 𝛼)𝐱(𝑛 − 1) + 𝛼�̃�(𝑛), 

where α is the leaking rate which determines the speed of the reservoir update dynamics; and  �̃�(𝑛) ∈  ℝ𝑁𝑥 

is a reservoir activation function and equals to 

�̃�(𝑛) = tanh (Win[1; 𝐮(𝑛)] + W𝐱(𝑛 − 1)), 

where tanh is the hyperbolic tangent function; and [𝑎; 𝑏]  represents vertical concatenation of the 

vectors/matrices a and b.  Once the ESN state is updated, the ESN output vector, readout vector, can be 

written as: 

𝐲(𝑛) = Wout𝐗, 

where 𝐗 = [1; 𝐮(𝑛); 𝐱(𝑛)] is a concatenation matrix of 𝐮(𝑛) and 𝐱(𝑛). The optimal weights of Wout can be 

obtained as: 

Wout = ytarget𝐗𝑻(𝐗𝐗𝑻 + 𝛽𝐈)
−𝟏

, 

where 𝛽 is a regularization coefficient that is being used to mitigate overfitting or feedback instability [91]; 

and 𝐈 is the identity matrix. 

In the case of using a feedback from the readout to reservoir, the reservoir activation function can be re-

written as: 

�̃�feedback(𝑛) = tanh (Win[1; 𝐮(𝑛)] + W𝐱(𝑛 − 1) + Wfeedback𝐲(𝑛 − 1)), 

where Wfeedback ∈ ℝ𝑁𝑥×𝑁𝑦  is the feedback weight matrix.  

In order to build the ESN model for spatiotemporal network traffic distribution and SLA violation/success 

rate prediction, a reservoir RNN with 𝑁𝑥  number of neurons should be generated along with random input 

(Win) and reservoir (W) weight matrices. The training input 𝐮(𝑛) which in general is normalized to have 

bounded values and includes traffic volume, spatial volume distribution, traffic class and its performance and 

user mobility pattern information should be fed into the RNN to collect reservoir activation states 𝐱(𝑛). Then, 

the weights of the output (Wout) should be computed in order to minimize the error measure between the 

output data and the desired data as presented by 𝐸(y, ytarget). The output of the ESN should represent a 

probability distribution of an SST which can be eMBB, URLLC etc. and its corresponding performance based 

on the predicted network load. Once this output is evaluated, the tenant-specific SLAs are used to evaluate 

a probability margin that represents a violation or success rate of the considered SST. This prediction then 

can be used by the private operator or its tenant to initiate this service or not. As this is a non-RT process, it 

can be initiated any time by the operator.  



D4.1 – Initial Design of the SDN/NFV Platform and Identification of Target 

        5G-CLARITY ML Algorithms 

68 
5G-CLARITY [H2020-871428] 

As in any other ML model, the ESN has a set of parameters that need to be defined in order to improve the 

performance of the model. These parameters can be listed as, (i) the size of the reservoir 𝑁𝑥; (ii) the sparsity 

of the reservoir; (iii) the spectral radius of the reservoir weight matrix 𝜌(W); (iv) the scaling of the input 

weight matrix Win; (v) the leaking rate α; and (vi) the regularization coefficient 𝛽. The effect and interaction 

among these parameters are well defined in [91] and will be identified for network traffic forecast and SLA 

violation/success rate in the next deliverables of WP4 in 5G-CLARITY. 

The proposed approach will be evaluated as follows. Firstly, a data set will be generated via system-level 

simulations in MATLAB and Mininet/NS3. This data set will include time stamped data of (i) the aggregated 

throughput per UE that is reported by its connected gNB, Wi-Fi AP and/or LiFi AP; (ii) the total load offered 

by each cell; (iii) the service type details including the success rate/performance; and (iv) the connected cell 

ID of the users. Once the data set is collected, it will be partitioned and used for training and validation 

purposes such as 80% of the data will be used for training and the remaining 20% will be used to validate the 

performance of the ESN.  

4.3 RT RIC: AT3S traffic routing/handover 

 Problem statement  

A path selection is required after a Multi-access (MA) PDU Session has been established and two user plane 

paths are available. That is, a UE should choose over which access each packet will be transmitted. Moreover, 

the UPF should choose which access to be used for each packet. A network function that controls both the 

UE and the UPF in choosing the paths in the PCF in the form of PCC rules. Then, the SMF derives AT3S rules 

for the UE and N4 rules for the UPF. Both rules are for controlling the traffic steering, switching, and splitting 

in the UE and the UPF, respectively. Figure 4.2 shows the relationship between the UE, the UPF, the PCF, and 

the SMF. 

 

Figure 4.2 High level AT3S architecture [92]. 

The AT3S rules include: 

 a precedence value, which denotes the priority of the AT3S rule of the current UE with respect to 
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those of other UEs, 

 a traffic descriptor, which details a service data flow (SDF), 

 a steering mode, which identifies an approach (i.e., ‘Active-Standby’, ‘Smallest Delay’, ‘Load-

Balancing’, and ‘Priority-Based’) of how a SDF will be steered,  

 a steering function, which controls whether the higher layer steering function or the lower layer 

steering function are used, and, 

 an indicator to support the 3GPP RAT differentiation. 

The N4 rules also include many descriptors, e.g., precedence value, forwarding action value, or multi-access 

rule, see Table 6.14.1 in [92]. 

The AT3S and N4 rules such as steering mode, priority level or load balance percentage need to be updated 

during the ongoing MA PDU session, and they depend on the condition of the networks. This is where an ML 

algorithm comes into help. It can automatically update the rules or parameters within the existent rules in 

an intelligent manner. 

 State of the art  

There is still not a work that directly focuses on applying ML algorithms to a complete AT3S functionality as 

described in the previous subsection. However, many works have discussed it partially. For example, the 

authors in [93] try to mitigate the greedy nature of MPTCP by means of predicting the traffic by using SVM. 

In the context of determining the optimal policy generated by PCF that is kept being updated about the 

network condition, the RL is a more appropriate ML technique to be used. An example of such work is 

discussed in [94], where a deep RL is used with recurrent neural networks. The application of RL is not only 

limited in the PCF, but also a RL-based scheduler is feasible, such as in [95].    

In [92], there are two different steering functions, i.e., the higher layer steering function (referred to as 

MPTCP) and the lower layer steering function (referred to as AT3S function). In this context, Figure 4.3 

depicts a structure in a UE that supports both MPTCP and AT3S functions. Unlike the MPTCP function, few 

works focus on the AT3S function. The main difference between both functions is that the AT3S function 

only supports the packet switching. Moreover, the AT3S function can handle all types of traffic, e.g., IP (TCP 

and UDP) or Ethernet traffic [92]. Other steering methods are still under discussion in IETF, such as the trailer-

based encapsulation protocol [96]. In the same layer as that of the AT3S function, another potential protocol 

is the Fast Session Transfer (FST) protocol of the IEEE 802.11ad or the IEEE 802.11ay. The FST protocol is 

relevant here as the 802.11ad occupies the mmWave band as in the 5GNR mmWave.  

Based on the previous paragraph, there are many low hanging fruits on the AT3S functions. Within a UE, the 

AT3S function is responsible of choosing either 3GPP or non-3GPP accesses. Once the UE receives the AT3S 

rules from the SMF telling the UE to use the AT3S function, the UE has the full authority to select either of 

them. Many studies fall into similar problem, i.e., how to optimally select WATs.  For example, the authors 

in [97] study such problem from the point of view of multi-armed bandit problems, which are a classic 

problem for the RL. A context-aware, optimal network selection method is proposed in [98]. Based on [98], 

the WAT selection can consider the asymmetry of uplink and downlink, the traffic-type-location-type of 

information, and the load changes. The WAT selection problem can also be translated to an uncooperative 

game problem [99]. This approach can be potentially improved by means of multi-agent RL based on the 

seminal work in [100]. 

 



D4.1 – Initial Design of the SDN/NFV Platform and Identification of Target 

        5G-CLARITY ML Algorithms 

70 
5G-CLARITY [H2020-871428] 

 

Figure 4.3 A structure of a UE that supports both MPTCP and AT3S functions [92] . 

 5G-CLARITY initial design  

In this section, we focus on the congestion control in MPTCP for AT3S. To be more specific, we are interested 

in the study of the improvement of single deep reinforcement learning (DRL) agent to determine an optimal 

N4 rule for an MPTCP-enabled UPF. Then, the UPF feedbacks rewards and states to the DRL agent as 

illustrated in Figure 4.4. The proposed model compared to [94] is that we integrate a model-based system 

to a model-free DRL system. A model-based system can use, for example, a Wi-Fi, LiFi, 5GNR channel models. 

By using this hybrid approach, a system performance can be improved due to the combination of a powerful 

DRL algorithm and an insightful model-based system [101].  

Suppose 𝐩𝑡+1  is a position vector or a waypoint of a user at t+1 as shown in Figure 4.5, which can be 

predicted by random mobility model such as the modified Levy-walk model, then we can estimate the path 

loss of a Wi-Fi, a LiFi, or a 5GNR link. Provided a transmit power, the RSSI can be estimated, which then can 

be used to estimate throughput. By using the new estimated position vector, a blockage can be predicted, 

and the DRL agent can anticipate it. Generally, the DRL agent can benefit from an output of a function of 

𝐩𝑡+1 , which is denoted by 𝑓(𝐩𝑡+1 ) as shown in Figure 4.5. Therefore, based on these predicted metrics, the 

DRL agent can devise a N4 rule for the UPF such as modifying the percentage of the traffic that goes through 

a specific technology in a way that generates a better reward compared to the model-free-only DRL system.  

 

Figure 4.4 A high level illustration of the state-reward-action flow between an DRL agent and an MPTCP-enabled 

UPF. 
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(a)                                                                                     (b) 

Figure 4.5 (a) An illustration of a new position vector that is generated by a model-based system, and (b) a hybrid of 

model-free and model-based DRL system. 

As for our problem formulation, a Markov decision process (MDP) is defined with the addition of metrics 

that are function of the predicted position vector 𝐩𝑡+1, such as predicted RSSI, blockage event, predicted 

throughput. In addition, the reward function for the MDP can also consider a factor that indicates the 

difference between the actual position at t+1 and the predicted position at t+1. This factor does not need to 

be calculated directly by using the position vector, which might indicate the need of a positioning system. 

However, it can also be inferred by the difference between, for example, the predicted and the actual RSSIs. 

With this additional reward function, the model that is used to predict the new position vector can also be 

improved.  

In summary, the states that are used by the DRL agent can represent the goodput, RTT, congestion window 

size, the number of active MPTCP subflows, and the predicted metric from the model-based predictor. The 

reward function can be the average goodput from all MPTCP subflows. The actions can be the parameter 

inside the N4 rule, which can further define the new number of MPTCP subflows, congestion windows, or 

the splitting ratio for the packets.  

During the running time, the DRL agent processes the rewards and the states every time sampling 𝑇s. This 

time sampling cannot be too small since the DRL agent will learn static information. However, it cannot be 

too large as well since the DRL agent might lose important information. The initial plan is to define it as a 

fraction of coherence time. As the time of writing, the coherence time of RF channels is thoroughly 

investigated, but only a few studies are available for LiFi channels. Therefore, we plan to investigate the 

coherence time of LiFi channels, and then apply this information to our proposed DRL system.  

In order to evaluate the proposed system, we use an emulator. Mininet-Wi-Fi [102] can be used to emulate 

the TCP/IP stack (including the MPTCP) and a Wi-Fi channel model. The mininet-Wi-Fi can then be extended 

with the LiFi functionality. First, a physical layer abstraction of LiFi channels should be defined. In defining 

the physical layer abstraction for LiFi channels, we use our simulator, named owcsimpy [103], which can 

define a realistic geometry model for indoor LiFi channels and generate CIRs. These Wi-Fi and LiFi models 

can then be integrated with an existing 5G emulator, e.g., a 5G module in ns-3 [104]. Then, the integration 

with the 5G module of ns-3 can be done based on [105]. By using Wi-Fi, LiFi, and 5GNR channel models and 

the emulators, we can emulate the proposed model-free and model-based DRL systems for controlling 

congestion for the MPTCP-enabled UPF.  
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4.4 RAN slicing in multi-tenant networks  

 Problem statement  

The considered scenario assumes a private venue network owner of a NG-RAN infrastructure composed of 

N cells with diverse deployment characteristics (i.e., access technology, cell radius, transmission power, 

frequency of operation). Each cell n has a total of NT(n) physical resources, which provide a total cell capacity 

CT(n) (b/s). These physical resources depend on the specific access technology used by the cell, e.g. Physical 

Resource Blocks (PRBs) for the case of 5G New Radio (NR), airtime in case of Wi-Fi, etc. The network is shared 

among K different tenants, each of them provided with a RAN Slice Instance (RSI). The different tenants can 

be for example different MNOs that provide service to their own users through the private network following 

a neutral host model (see 5G-CLARITY D2.2 Section 3.3).  

The considered problem consists in determining how the available capacity is distributed among the different 

RAN slices in the different cells. Given the heterogeneity and dynamics of the traffic (i.e. the traffic of the 

different tenants will vary in time and space and may exhibit complementarities in the different cells), a 

smart capacity sharing strategy will be proposed, which will dynamically determine the resource quota (i.e. 

the proportion of physical resources) allocated to each RAN slice in each cell and configure the network 

accordingly.  

The objectives of the capacity sharing approach are two-fold. On the one hand, it needs to achieve an 

efficient utilisation of the available resources, avoiding both over and under provisioning. On the other hand, 

it needs to fulfil the SLA established between the private venue network owner and each tenant. This is 

assumed to be defined in terms of: (i) the Scenario Aggregated Guaranteed Bit Rate SAGBR(k) that measures 

the aggregate bit rate to be provided to tenant k, if requested, across all the cells in the network; and (ii) The 

Maximum Cell Bit Rate MCBR(k, n) that specifies the maximum bit rate that can be provided to tenant k in 

cell n. This limit is defined in order to avoid that all the capacity of a cell is assigned to a single tenant under 

highly extreme heterogeneous spatial load distributions with tenants demanding excessive capacity in 

certain cells. In this way a fair network resource sharing among tenants can be achieved.  

 State of the art  

The capacity sharing problem for RAN slicing has been addressed by different works in the literature 

following different approaches. In some works, the problem has been dealt by means of mathematical 

optimisation, like in [106], which used the Karush Kuhn Tucker conditions, in [107], which used integer 

programming, or in [108], which used a biconvex problem for developing a joint share solution of radio 

resources, caching and backhaul. Similarly, in [109] the capacity sharing is achieved by regulating the number 

of admitted QoS flows of each tenant through an admission control optimized by means of a Semi-Markov 

Decision Process. 

Other works approached the capacity sharing by means of heuristic algorithms. These include the 

exponential smoothing model in [110], the admission control approach based on profit-related metrics in 

[111], a market oriented model in [112], a winner bid problem in [113], a fisher market game in [114] or an 

iterative algorithm in [115].  

In order to deal with the inherent uncertainty in wireless environment and the large-scale of 5G mobile 

networks [116], some other works have approached the capacity sharing problem in RAN slicing scenarios 

by using DRL algorithms [117]. In this regard, in [118] and [119], the capacity reserved to each slice is 

provided by means of Deep Q-Network (DQN) and Deterministic Policy Gradients combined with K-Nearest 

Neighbours, respectively. Additionally, [120] and [121] provide the cell capacity share solution by firstly 

computing the aggregated capacity reserved to each slice at network level by using DQN and, then, applying 

a heuristic algorithm to obtain the cell capacity for each tenant.  
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The proposed solution for the capacity sharing problem in 5G-CLARITY is based on a Multi-Agent 

Reinforcement Learning (MARL) approach, where a collaborative MARL algorithm learns the capacity to be 

provided to each tenant by associating each agent in the MARL to a different tenant. In this way, tenants can 

be easily added/removed in the scenario just by adding or removing the corresponding agent. To the best of 

our knowledge, none of the previous works has focused on MARL to obtain the capacity sharing solution in 

RAN slicing scenarios considering a multi-cell perspective. In this respect, the recent work [122] also 

considers a multi agent approach based on Ape-X technique associating different agents (so-called actors) 

to different slices. However, the capacity assignment is done independently for each cell, while in the 

proposed approach the assignment takes into account jointly all the cells in the scenario in order to balance 

the spatial and temporal traffic heterogeneities among different tenants. Additionally, the proposed model 

addresses the capacity sharing function when considering the SLA defined as an aggregate capacity across 

the whole scenario in order to capture the total amount of capacity to be provided to a tenant. Instead, other 

approaches such as [118]-[122] just consider the SLA specified in terms of the QoS parameters defined at 

user/QoS flow level, but without enforcing any aggregate capacity per tenant.  

 5G-CLARITY initial design  

The proposed RAN slicing function dynamically tunes the capacity share for each tenant and cell in order to 

adapt to the spatial and temporal traffic variations among different cells, minimise SLA breaches in the 

system and optimise the resource utilisation of the different cells in the system. The capacity share of tenant 

k at time step t is defined as αt(k)=[αt (k,1),…, αt(k,n), …, αt(k,N)], where each component αt(k,n) is the 

resource quota assigned to tenant k in cell n given by the proportion of the total physical resources NT(n) in 

the cell provided to the tenant during time step t and ranges 0 ≤ αt(k,n) ≤ MCBR(k,n)/CT(n). Note that the 

capacity share solution in a cell cannot exceed the total capacity of the cell, so that ∑ αt(k,n)K
k=1 ≤1. To adapt 

to the varying traffic demands, the capacity share αt(k) is updated periodically in time steps of duration t 

that will be in the order of minutes (the appropriate setting of t will be studied during the performance 

analysis stage). 

In order to deal with the complexity of the computation of αt(k) in multi-cell scenarios, the solution is 

designed as a MARL where each RL agent is associated to a tenant k that learns the policy π(k) to tune αt(k) 

dynamically by interacting with the environment. Given that the learning needs to be performed 

continuously from the network environment and large state and action spaces are expected, each agent k 

derives its policy π(k) according to a DQN based algorithm as the RL method.  

Figure 4.6 illustrates the proposed solution scheme. The RAN slicing management function at the AI engine is 

composed by the DQN agents of the different tenants. At each time step t, each agent obtains the state st(k) 

from the environment and, based on the policy π(k), triggers an action at(k) to tune αt(k). Moreover, a reward 

signal rt(k) that reflects the obtained performance after the last action at-1(k) is provided to the k-th agent. 

Since the actions of each tenant are triggered independently, a capacity sharing solution validation function 

is necessary to ensure that the selected actions in each cell n do not exceed the total cell capacity. 

Figure 4.6 also depicts the inputs that are used by the proposed solution. On the one hand, the SLA terms, i.e. 

SAGBR(k) and MCBR(k,n) need to be provided by the private network operator when the RAN slice is created. 

On the other hand, the telemetry collector needs to gather the following inputs on a t time step basis: (i) 

fraction of physical resources used for data traffic by tenant k in cell n in time t, denoted as ρt(k,n), (ii) offered 

load by tenant k in cell n in time t, denoted as Ot(k,n) and understood as the capacity required by the tenant 

to transmit its data, and (iii) total throughput of tenant k across all the cells, denoted as SThrt(k). These 

measurements at time t correspond to average values measured over the time window (t-t,t). These inputs 

are used by each agent to compute the state and the reward, as explained in detail in the following. 
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Figure 4.6: MARL scheme for RAN slicing. 

a) State  

The state of tenant k at time t is denoted as st(k) = [st (k,1),…, st(k,n), …, st(k,N)], where element st(k,n) 

corresponds to cell n and is defined by the triple <ρt(k,n), αt(k,n), αava,t(n)>, where αava,t(n) is the available 

capacity share in the cell not assigned to any tenant, given by αava,t(n)=1- ∑ αt(k,n)K
k=1 . 

b) Action  

The k-th tenant’s agent triggers a joint action at(k) = [at(k,1),…, at(k,n), …, at(k,N)] for all the cells composed 

of the cell-specific actions at(k,n), defined as the increase in capacity share αt(k,n) of tenant k to be applied 

in the following time step in cell n. This increase is defined in discrete steps of size Δ, so that the action can 

take three different values at(k,n)ϵ{Δ,0,-Δ}. Then, the capacity share to be applied becomes:  

αt(k,n)= αt-1(k,n)+at(k,n) (1) 

Note that the action space for at(k) corresponds to all the possible combination vectors of the three possible 

actions for each of the cells. Then, the number of possible actions for each tenant is 3N. 

Initially, all components of αt=0(k) are initialized to:  

αt=0(k,n)=SAGBR(k)/( ∑ SAGBR(k))

K

k=1

 (2) 

Then, the actions at(k) triggered by each of the tenants are considered and αt(k) is updated by applying (1) 

for each cell. In a specific case when the chosen action at(k,n) forces αt(k,n) to be out of its bounds (i.e. 

αt(k,n)<0 or αt(k,n)>MCBR(k,n)/CT(n)), the last αt-1(k,n) value is maintained instead.  

c) Reward  

The reward rt(k) assesses how good was the last action at-1(k) performed for the previous state st-1(k). The 

reward accounts for different components reflecting both the SLA satisfaction and the capacity utilisation.  

The first component is the SLA satisfaction factor of tenant k, γSLA(k), which is the ratio between the provided 

and the requested capacity, defined as: 
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γSLA
(k)=min(

SThrt(k)

min(∑ min(Ot(k,n),MCBR(k,n))N
n=1 ,SAGBR(k))

,1). (3) 

The second component of the reward is the capacity utilisation factor, γut(k), which aims at minimising the 

overprovisioning and under provisioning of resources and is defined as:  

γut(k)=
SThrt(k)

∑ CT(n)·αt(k,n)N
n=1

 . (4) 

Then, the reward rt(k) considers the weighted product of the SLA satisfaction factor of tenant k, the 

summation of the SLA satisfaction factors of the other tenants and the capacity utilisation factor of tenant k, 

that is:  

rt(k)=·γSLA
(k)φ1· (

1

K-1
∑ γSLA

(k')
K

k'=1
k'≠k

)

φ2

·γut(k)φ3 , (5) 

where φ1, φ2 and φ3 are the weights of each component. 

d) DQN agent and training process 

The DQN agent of tenant k centrally learns the policy π(k) that dynamically configures αt(k). For this purpose, 
the original DQN algorithm in [123] has been particularised to the current state, action and reward 
definitions. The DQN aims at finding the optimal policy π*(k) that maximises the discounted cumulative 
future reward (i.e., ∑ γkrt+j+1(k)∞

j=0 , where γ is the discount rate ranging 0≤ γ ≤1), by obtaining the optimal action-
value function Qk

*(s(k), a(k)), which is the maximum expected discounted cumulative reward starting at time 
step t from s(k), taking the action a(k) and following the policy π(k): 

Qk
*(s(k),a(k)) = E [rt+1(k)+γ max

a'(k)
 Qk

*(st+1(k),a'(k))|st(k)=s(k), at(k)=a(k)] (6) 

In DQN, Qk
*(s(k), a(k)) is approximated by a deep neural network (DNN) with weights , denoted as 

Qk(s(k),a(k), ). In order to update Qk(s(k),a(k), ), the DQN agent of the k-th tenant is composed of the 
following elements:   

 Evaluation DNN (Qk(s(k),a(k), )): corresponds to the main approximation function of the expected 
reward function Qk(s(k),a(k)).  

 Target DNN (Qk(s(k),a(k), �̅�)): a separated DNN with weights �̅� is used to obtain the Time Difference (TD)-
Target, computed as rt(k)+γ max

a'(k)
 Qk(st(k),a'(k),�̅�). This DNN is updated every M steps with the weights of 

the Evaluation DNN, i.e. �̅�=. The architecture of Qk(s(k),a(k),�̅�) is the same as the one of Qk(s(k),a(k),).  

 Experience Dataset Dl(k):  for each time step t, the experience tuple et=< st-1(k), at-1(k), rt(k), st(k) > is 
stored into a dataset Dl(k) of length l. Then, a mini-batch of experiences U(Dl(k)) of length J is randomly 
selected from Dl(k) to update Qk(s(k),a(k),).  

At initialisation, the weights of both the evaluation and target DNNs are randomly selected. Then, they are 
updated as a result of the training process of each DQN agent, which is divided in two parts: the data 

collection and the update of weights . 

The data collection consists in gathering experiences from the network environment and storing them in the 
experience dataset Dl(k). For each time step t, the DQN agent observes the state of the environment st(k) 
and, accordingly, triggers an action at(k) to the environment based on an ε-Greedy policy π(k).This policy 
chooses actions according to  a(k)= argmax

a'(k)
Qk(s(k),a'(k),)  with probability 1- ε and a random action with 

probability ε. Then, the reward rt(k) associated to the last performed action at-1(k) for the last state st-1(k) is 
obtained. The experience tuple et=< st-1(k), at-1(k), rt(k), st(k) > is stored in the dataset Dl(k). When the 
dataset Dl(k) is full (i.e. l experiences are stored), old experiences are removed from the dataset to save new 
ones.  
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In parallel, the process of updating the weights q  of Qk(s(k),a(k),)  is performed iteratively. Firstly, a 
minibatch of experiences U(Dl(k)), which has a length of J experiences, is randomly selected from the dataset 
Dl(k). Then, for each sample in U(Dl(k)), it is performed the upgrade of Qk(s(k),a(k),) and, once it has been 
performed for the J samples, a new minibatch of experiences is selected. The upgrade of Qk(s(k),a(k),) for 
the experience e𝑗=< sj-1(k), a𝒋-1(k), r𝑗(k), s𝒋(k) >, the following mean squared error (MSE) loss function L() is 

considered: 

L()= E[(rj(k)+γ maxa'(k)Qk(sj(k),a'(k),�̅�) - Qk(sj-1(k),aj-1(k),))
2
] (7) 

Then, the gradient descent of L(), ∇L(), is considered to update , which is obtained by differentiating 
L() with respect to , resulting in the following expression:  

∇L()=E[(rj(k)+γ maxa'(k)Qk(sj(k),a'(k),�̅�)- Qk(sj-1(k),aj-1(k),))∇Qk(sj-1(k),aj-1(k),)] (8) 

Then, the weights in the Qk(s(k),a(k),) network are upgraded according to:  

→+𝜏∇L() (9) 

where  is the learning rate. Finally, the obtained Qk(s(k), a(k)',) is used to update the ε-greedy policy π(k). 
Moreover, during the update of weights , the DQN agent has a counter m of the number of performed 

updates and, when m=M, the weights in the target DNN are updated, i.e. �̅�=. 

e) Multi-agent operation 

Although the triggering of actions by each DQN agent is performed independently of others, the different 
DQN agents operate in a collaborative and coordinated manner. 

On the one hand, a collaborative reward is selected, since the reward definition in (5) for tenant k considers 
the SLA satisfaction factor of both tenant k and the other tenants in the system in order to avoid selfish 
actions that would worsen the other tenants. The objective of this is to potentiate those actions that benefit 
both tenant k and the other tenants.  

On the other hand, the triggering of actions and storing of experiences of the different DQN agents is 
performed synchronously in every time step. Then, once the actions of all agents are obtained, it is necessary 
to validate that the selected actions in each cell n do not lead to exceeding the total cell capacity (i.e. to avoid 

that ∑ αt(k,n)K
k=1 >1). In that case, actions of tenants aiming at decreasing or maintaining the capacity share 

in the cell, i.e., at(k,n) ϵ{-Δ,0}, are firstly applied and the resulting cell capacity availability αava,t(n)  is 

computed. If there is no available capacity (i.e., αava,t(n)=0), the actions of tenants willing to increase its 

capacity in the cell are not applied. In turn, when there is available capacity (i.e., αava,t(n)>0), αava,t(n) is 
distributed among those tenants with at(k,n)= Δ proportionally to their SAGBR(k) value, as long as they are 
not already provided with more than SAGBR(k). 

f) Evaluation methodology 

The proposed approach will be evaluated by means of system-level simulations using TensorFlow for 

implementing the DQN agent. The performance assessment of the model will be evaluated in terms of 

different KPIs, such as the throughput per cell/tenant, the assigned physical resources per cell/tenant, the 

SLA satisfaction or the utilisation of physical resources. 

4.5 Optimal network access problem  

 Problem statement  

In optimal network access, optimal communication resources matching and allocation are combined 

together to satisfy diverse requirements from users and services, in terms of latency and QoS, and maximize 

utilization of networking and computing resources. Communication resource matching aims to generate 

optimal policies to match or to associate User Equipment (UEs) with Access Points (APs) and/or Base Stations 
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(BSs, e.g., 5G gNB) in order to satisfy requirements of delay and throughput (i.e., KPIs). Communication 

resource placement allocates spectrum, channel, and relevant AP/BS access resources to UEs to satisfy the 

given users, services, and network requirements.  

The network access problem can be considered as a combination of two NP-hard problems, including many-

to-many matching and bin-packing. The 5G network scenario impose extra challenges with additional 

challenges due to the decentralization of control, the sliceability of 5G networks, the complexity and 

heterogeneity of the network infrastructure (e.g., 4G, 5G, Wi-Fi, LiFi), the mobility of UEs, and dynamic 

changes in traffic and performance conditions in radio and networks links. Hence, combining, studying and 

solving the network access problem with multi-objective analysis and with machine learning based 

approaches are essential to enable multi-tenancy in convergent Cellular, Wi-Fi and LiFi based Edge 

Infrastructure proposed in 5G-CLARITY.   One suitable approach considered in our preliminary study is the 

modelling of a DRL based approach to provide a distributed solution without requiring global and accurate 

network information. Besides, DRL can reduce the requirement of computational resources especially in a 

complex network with a large state space. Our study aims to deploy the proposed solution in a realistic 

testbed to emulate different types of use cases.  

 State of the art  

Several studies deal with sub-problems of the network access problem. In this section we introduce some 

relevant works to our study. In the first stage, the simple scenario with a single UE is researched. In [124], a 

policy learning approach for the optimal selection of channels is presented to minimize the interferences of 

the UE in a wireless sensor network. Deep Q Learning (DQL) with experience replay algorithm is applied to 

solve this multichannel access problem. The DQL algorithm generates positive or negative rewards to the UE 

selection to apply the policy learning. As a result, to get the most long-term reward, the UE keeps adjusting 

the policy until it is optimal. The simulation results show that the DQL approach, which can provide a near-

optimal solution without any knowledge of the system dynamics, is adept in policy definition in the network 

access problem. However, lacking the retraining mechanism, this strategy cannot adapt to the dynamics of 

the 5G network. Then, [125] introduces a threshold for the long-term rewards to address the changes in the 

network states not addressed by the previous study. As a result, when the network states change, the 

decrease of the reward can trigger the retraining of the DQL model to adapt the learning process to the 

changes.  

Furthermore, the dynamic spectrum access problem for multiple UEs sharing multiple channels is considered. 

The work in [126] provides a solution for the network access problem in the multi-sensor scenario in which 

a sensor acts as a relay to collect and buffers the traffic from all the other sensors by simplifying the solution 

of the problem and solving it with a DQL model. However, only one relay is considered in this paper, and 

scenarios with more are than one relays require further research. Moreover, [127] presents a study of the 

dynamic spectrum access problem for multiple UEs sharing multiple channels assuming an attempt 

probability for each UE to select a channel and transmit during every timeslot to avoid network congestion. 

To solve the problem, the DQN model located in the BS learns the policy for all offline UEs to decide the 

pairing relationship between the UEs, the channels, and the corresponding attempt probability of each pair. 

The study in [127] also proposes the usage of Double Deep Q Network (DDQN) with a duelling DQN to 

mitigate the over-estimation issue of Q-learning. Simulation results confirm improvements in the throughput. 

However, learning the policy in a centralized manner may increase the overhead, especially in a dynamic 

network.  

Another relevant study in [128] developed a model-based DDQN to optimise the one-to-one matching 

between UEs and channels for the maximum long-term data rate in a HetNet with multiple UEs and multi-

scale BSs. The simulation results have shown the advantages of the proposed method in convergence speed 

and the system capacity. However, only the one-to-one matching is considered here, but in fact each channel 
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can be shared with many UEs and one UE can occupy several channels. Therefore, the DDQN-based method 

for many-to-many matching between the UEs and the channels is an open issue waiting for further research.  

 5G-CLARITY initial design  

Figure 4.7 represents the designed private network with N UEs, one gNB (5G BS) with M channels, one Wi-Fi 

AP with K channels and one LiFi AP with N channels randomly distributed in the private network. Hence, 

there are M+K+N channels provided to serve N UEs. In this section, we are focused on a real-time network 

access problem in which a UE requires to transmit, and expects services from the BS/AP as soon as possible, 

as long as network resources are enough. The response time between the task generation and beginning of 

the transmission is mainly composed of two components: i) The time spent on waiting for a suitable time 

slot to transmit, which is in the order of milliseconds or seconds since the time duration of each frame is 

10ms in 5GNR; ii) the running time of the ML algorithm for choosing the action, which might take several 

seconds. Therefore, the time scale for network access procedure is in the order of milliseconds or seconds 

and can be approximated as real-time. 

 

Figure 4.7 Private network scenario with gNb, Wi-Fi AP, LiFi AP and N UEs. 

To build a model to solve this problem, historical data needs to be collected from a testbed or the NS3 

network simulator periodically. The historical data that can be collected from the telemetry collector include: 

the transmission rate of each channel, noise power of each channel, bandwidth of each channel, transmit 

power of each AP, GPS location of each UE, location of each AP, throughput of each UE, and the file size. 

Meanwhile, the data that needs to be collected from the slice manager include the maximum tolerable delay 

of each service, and the maximum tolerable SINR of each service.  

The output of the model would be a choice that each UE picks out from M+K+N channels. Consequently, an 

access request from the UEs will be sent to the 5G Access and Mobility Management Function (AMF) which 

manages the attachment of the terminals to the gNB in order to request the proper available channel and 

access. The attempt probability will be one of the outputs impacting whether a UE transmits or not to avoid 

network congestion.  

In our preliminary evaluation, we consider DRL a promising technique to be developed to solve the network 

access problem. Both the UE-centric and BS-centric methods will be researched. 

The logic of UE-centric method is presented in Figure 4.8. Every UE with an embedded AI model can choose 

an AP to connect. Furthermore, each UE updates the AI model based on the information collected 

independently. To be more precise, when a UE wants to execute a compute task, the AI model within the UE 

will works to choose one AP or channel based on the global network state. Then, every decision is evaluated 
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and assigned a reward based on a reward function, which will be designed using the traditional game theory. 

All the UEs share and buffer the information about this transmission and the change of the network state. 

Based on the historical transmission data, all the UEs update the weights of the ML algorithm. This method 

can adapt to a dynamic environment better but may lower the efficiency. 

Figure 4.9 describes the BS-centric method. The BS collects historical data to train and retrain the AI model 

when the environment characteristics change significantly or after a preset period. Then, the BS shares the 

weights of the trained model with each UE. When a UE has a task to deal with, the shared AI model will 

compute and get the choice of the action. All the data will be sent to the BS and wait for the next retraining 

of the model. This method avoids using game theory to get the optimal solution and obtain high efficiency. 

Our planned evaluation methodology can be summarized as follows. Firstly, the method will be tested by 

the data generated from the NS3 network simulator or further from the testbed. Secondly, the adaptability 

of the method should be evaluated in different network environments, topologies, and requirements. Thirdly, 

the performance of the method can be evaluated by observing different ML metrics such as the learning rate. 

Finally, the method will be compared with the other machine learning algorithms or traditional network 

access algorithms based on the selected KPIs. 

 

Figure 4.8 Logic diagram of the UE-centric method. 

 

Figure 4.9 Logic diagram of the BS-centric method. 

4.6 Optimal compute offloading  

 Problem statement  

With the rapid development of massive Internet of Things (mIoT) at an unprecedented speed, the 

corresponding deployments may include thousands or millions of heterogeneous and resource-limited 

devices connecting to the network and collecting massive data, which can trigger bottlenecks in the network 

and compute infrastructure. In addition, these devices often require connectivity, storage, and processing 
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capacity at the edge, to meet the performance and resiliency requirements of new services such as Industry 

4.0. 

To address these challenges, network traffic must be offloaded to the complimentary AP (e.g., Wi-Fi, LiFi), as 

addressed by the algorithm presented in Section 4.5, and the computational tasks and data storage 

associated with the services should be offloaded to nearby MEC servers and/or distributed between the BSs, 

APs, and even neighbouring devices. However, optimal compute offloading will require dynamic definition 

and update of offloading policies on each device (e.g., UE, IoT devices), network element, and computing 

elements at the edge by taking into consideration multiple optimization variables, requirements, and 

network and computing constraints as well as large and dynamic volume of data and connections generated 

by mIoT. 

Hence, we define the Optimal Compute Offloading (OCO) problem as the optimal policy to offload the 

appropriate amount of workload to appropriated available resources distributed through the edge of the 

network. In our problem the optimal offloading policy definition and update are based on multiple and 

dynamic network states using the services requirements in terms of processing and storage,  the location, 

throughput/channels bandwidth, level of power of the signal, and available computing and storage resources 

in devices UEs/IoT, in radio nodes (Wi-Fi, LiFi, LTE, and 5GNR), and in computing nodes located in 

private/public Edge computing and Cloud computing infrastructure. We note that our defined OCO problem 

can be seen as a complementary problem to the optimal network selection problem presented in Section 

4.5. 

Given the complexity and multi-objective nature of the problem as well as the dynamic and heterogeneous 

infrastructure (i.e., large and dynamic number of network states) required to define and update optimal 

policies in mIoT/5G infrastructure, the OCO problem is intractable for traditional optimization approaches. 

As a result, we study the OCO problem as multi-objective optimization problem and propose a Deep Learning 

based approach to deploy compute workloads in distributed or centralized mIoT and 5G infrastructures.   

 State of the art  

Some relevant studies on Compute Offloading in 5G networks were proposed in the literature focusing on 

the cost and energy efficiency using AI assisted approaches to address the intractability of the problem in 

dynamic scenarios and combined with edge/fog computing. The authors in [129] studied the monetary cost 

reduction by predicting the EU mobility using Deep Q Learning (DQL) algorithm to offload cellular data traffic 

to the complimentary WLAN.  The proposed DQL learns the offloading policy and the convolutional neural 

network (CNN) predicts the states of UEs when the mobility patterns of UEs are unknown. With the same 

objective as [129], [130] considers the computation offloading problem in a MEC-enabled network, in which 

the DQL algorithm assists one central BS to offload the computation tasks of the multiple mobile users to 

one nearby MEC server in an optimal way.  

Furthermore, [131] proposes a Double Deep Q Network (DDQN) algorithm to learn the optimised offloading 

policy for computation tasks in a more complex scenario with multiple BSs and one shared MEC server. 

Although the new algorithm can significantly improve offloading performance, it causes a huge waste of 

energy during the off-peak period. To minimise energy consumption, a new DQL-based algorithm is proposed 

in [132] to control the activation of the small base stations. Moreover, the work in [133] assumes the 

resource of multiple MEC servers as a part of the cloud resource to simplify the offloading problem in the 

network with multiple MEC-enabled BSs. The proposed reinforcement learning algorithm has two layers, the 

first layer determines an optimal cluster for each offloading task based on a DQL algorithm; and the second 

layer specifies the physical machine to serve the given task based on Q-learning. Other related studies 

focusing on computing offloading problem in the edge/fog networks for Industry 4.0 are introduced in [134] 

and in [135] by considering the offloading from resource-limited private networks to the public networks. 
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However, no works in the literature considered a comprehensive study of OCO problem as multi-objective 

optimization problem with additional complete set of realistic parameters collected from public and private 

mIoT and 5G testbed infrastructures (e.g., device location, LiFi technology, available private and public 

compute resources including private MEC nodes and Cloud Computing). 

 5G-CLARITY initial design  

As shown in Figure 4.10, our system model considers several UEs, one gNB with M channels, one Wi-Fi AP 

with K channel and one LiFi AP with N channels that are randomly distributed in the private network. From 

the perspective of the computing resource, there is a private MEC in the private network, and a public MEC 

and a centralized cloud in the public network. Historical data will be generated from a testbed or a simulator 

(e.g. NS3), which can be made available to the ML model through the 5G-CLARITY telemetry collector. 

Required data will include: 

 GPS Location of UE 

 Location of Wi-Fi and LiFi APs 

 Data rate of channels 

 File size of each task 

 Transmit power of each AP 

 Throughput of each UE 

 Size of computing resources: 

o On-device computing resource 

o Local private computing resource 

o Public MEC computing resource 

o Cloud computing resource 

In addition, the maximum tolerable delay of each service, maximum tolerable SINR of each service and the 

unit price of the computation resource can be derived from 5G-CLARITY Management and Orchestration 

stratum.  

The output of the model will be a decision about the offloading of each computational task. Firstly, for data 

offloading, the output of the model is whether the data traffic will be transmitted through gNB, or offloaded 

to Wi-Fi and LiFi APs, or will not be transmitted and wait for the next time slot to get a better choice. 

Moreover, for the computation offloading, the output will be the decision that the computational task will 

be sent to the local private MEC computing resource, public MEC computing resource, cloud computing 

resource, or it should wait for the next time slot to get a better choice. In our preliminary study, we consider 

a DRL, especially the deep Q network, to solve the offloading problem according to the different levels of 

network dynamics and the size of the on-device computing resources. As in Section 4.5, both the UE-centric 

method and the BS-centric method will be researched and compared. For the UE-centric method, the AI 

model is located in each UE (see Figure 4.8), while the AI model is built in the BS in the BS-centric method 

(see Figure 4.9).  

A similar evaluation methodology as described in Section 4.5 will be used. 
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Figure 4.10 Scenario for OCO study. 

4.7 Indoor ranging with nLoS awareness  

 Problem statement  

In wireless communication systems, non-Line-of-Sight (nLoS) identification problem can be described as 

shown in Figure 4.11. Signals travelling between the transmitter and receiver are sometimes obstructed by 

different objects, e.g., people, walls, furniture and doors. If a signal propagates directly between the 

transmitter and receiver, it is considered as Line-of-Sight (LoS) condition. On the other hand, if there is no 

direct path between the transmitter and receiver, it is known as nLoS condition which results in multipath 

propagation. In particular, knowing whether the link condition is nLoS or LoS can be of great use in several 

applications such as localization, where nLoS link condition results in a bias in the estimation of the distance 

between transmitter and receiver. 

 

Figure 4.11 nLoS Scenario.   

  State of the art  

Many studies have been conducted to leverage ML approaches to distinguish the LoS and nLoS scenarios. 
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The algorithm needs first to learn from the training data to generate the classification model. Then the 

trained classifier is applied to test and recognize the unknown data samples containing nLoS and LoS 

information. By considering how the training data is represented, these approaches can be divided into two 

main categories, supervised learning and unsupervised learning. 

In the supervised ML, the training data has to be labelled according to number of available classes (at least 

two classes, LoS and nLoS). In other words, the supervised ML can be also referred to as binary classification. 

Due to the superb performance of supervised ML approaches, they are popular and used extensively in the 

literature [136]. In particular, one disadvantage is that the classification accuracy might degrade once indoor 

conditions or geometry are changed as the training data might need to be updated to generate new 

classification model. Moreover, the supervised learning approaches require some efforts to maintain, label 

and validate the data, especially if a large-scale data is needed. Conversely, in unsupervised learning, there 

is no need for explicit and prior labelling of training data, thereby reducing lots of efforts and time [137]. 

However, since the unlabelled training data is utilized, the unsupervised ML algorithms are expected to be 

more complex with intensive processing time. In other words, by using unsupervised learning the complexity 

(both labour effort and time) of labelling the training data has been moved to the algorithm itself rendering 

it more computationally complex. The comparison between the above-mentioned machine learning 

approaches can be summarized in the following Table 4-1. 

Table 4-1 Comparison of ML Approaches. 

 

Supervised 

Learning 
Unsupervised Learning 

Training overhead large no training phase 

Classification accuracy high average 

Implementation complexity low high 

Several nLoS identification techniques have been introduced in the literature. nLoS identification Support 

Vector Machine (SVM) is a supervised ML approach proposed in [138]. It extracts and utilizes features from 

the Channel State Information (CSI) for nLoS identification based on the Least-Square (LS)-SVM algorithm. 

While SVM generally has a high computational burden, LS-SVM has overcome this problem by solving the 

linear equation instead of quadratic programming problem. Moreover, to address nLoS identification, the 

Random Forest (RF) algorithm is introduced and investigated in [139]. Although the algorithm achieves a 

superb performance, in terms of both training time and accuracy, it is not yet evaluated in dynamic scenarios, 

e.g. mobile node. Another CSI-based indoor localization system is AmpN [140] which adopts the Back 

Propagation (BP) neural network and K-Mean algorithm to achieve real-time LoS/nLoS identification. In [141] 

the authors present DeepLocNet which is a deep learning-based classifier that utilizes the Received Signal 

Strength Indicator (RSSI). In general, neural network-based approaches require a great amount of data for 

training which might not be always available, especially when dynamic environments are dealt with. Finally, 

an example of unsupervised ML approach is introduced in [142] where the authors applied Expectation 

Maximization for Gaussian Mixture Models (EM-GMM) to identify LoS and nLoS propagation. While this 

approach does not need training phase and is of advantage in this sense, it suffers a high complexity 

rendering its performance limited in practice.  

 5G-CLARITY initial design  

Among all above-mentioned algorithms, SVM-based approaches appear to be more popular due to their 

ease of generalization and training [143]. Therefore, for our initial design, we rely on SVM to classify the 

LoS/nLoS links. In the following, we briefly explain the properties of the proposed algorithm. We aim for 

Approach 
Criteria 
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designing a real-time SVM ML algorithm which receives the CSI/RSSI of Wi-Fi links from the telemetry 

collector. Upon reception of a prediction request, it then returns a prediction about the Wi-Fi link condition, 

i.e. being LoS or nLoS. The steps explained in the sequel are followed to design the algorithm. 

Firstly, knowing that SVM is a supervised ML algorithm (i.e. the training data should be labelled), we train 

the SVM model in an offline manner. To this end, we, in the first step, extract the statistical feature from the 

data, i.e. CSI/RSSI. The features that can be potentially extracted are as follows: 

 Amplitude based: mean, kurtosis, skewness, Rician K-factor. 

 Time based: mean access delay, Root Mean Square (RMS) delay spread. 

Secondly, in the training phase, the abovementioned features are utilized to obtain the parameters w and b 

in the following equation 

c(x) = sgn[wT φ(x) + b], 

where c(x) calculates the class (1 or -1) given the feature vector x, sgn[x] is a function which returns 1 if x>0, 

0 if x=0, and -1 if x<0. Furthermore, φ(x) is the non-linear transformation applied on data to map them into 

high dimensional feature spaces, consequently rendering them more separable. In general, the SVM, 

described by the above equation, separates the two classes by maximizing the margin between the two 

classes while allowing misclassification to be able to handle non-separable data (see Figure 4.12). 

Furthermore, employing kernels, i.e. φ(x), allows for facilitation of the classification in the problems where 

data are not linearly separable.  

Once a link is identified as nLoS, we use the SVM regressor to calculate the distance between the transmitter 

and the receiver. The principles of the regressor is similar to that of the classifier except that the parameter 

we are aiming to predict is continuous. Given that, the above-mentioned equation turns into 

d(x) = wT φ(x) + b, 

where d(x) is the estimated distance. 

Finally, evaluation of the algorithm is carried out using simulations in Python environment with the aid of a 

dataset collected in a real-world scenario. This consists of  

 Evaluating the accuracy of prediction when different subsets of features are used. 

 Evaluating the speed of training and prediction. 

Moreover, in the second phase, the algorithm is evaluated in practice by receiving real-time data from a real 

indoor environment communication link. 

 

Figure 4.12: Data classification using SVM algorithm. 
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4.8 Resource provisioning in a multi-technology RAN  

 Problem statement  

Network slicing allows infrastructure providers to partition their physical network into several logical self-

contained networks or slices, which are orchestrated in different ways depending on the specific service 

requirements. For private operators, these network slices can be used to separate their own services or can 

be offered to service providers and public operators (acting as tenants) through the instantiation of multiple 

slices. Whatever the deployment scenario is, network slices need to be provisioned with enough networking 

and computational resources, so that the service quality of such slices is preserved. However, resource 

provisioning becomes a complicated task, especially in private scenarios as they usually rely on non-3GPP 

access technologies such as Wi-Fi or LiFi in addition to the pure 3GPP access. 

To take advantage of the scenario with multiple RATs, the 3GPP has defined the AT3S function, which stands 

for Access Traffic Steering, Switching and Splitting [54]. This function implements a set of rules that allow the 

operator to specify different policies according to its business and technical goals. The AT3S function also 

adds additional complexity to the problem of slice provisioning in the RAN, since the amount of allocated 

resources depends on such policies. For example, the traffic of a given slice can be duplicated across several 

RATs or limited through one RAT, e.g. by establishing a percentage value or routing factor. 

The proposed AI-driven 5G-CLARITY algorithm will help the slice manager function manage the radio 

resource provisioning of different RAN slices in a time-sequential manner. Such slices coexist in a 5G private 

network scenario with multiple WATs considering AT3S policies. The aim is to improve the performance of 

the communication services in terms of throughput, latency and reliability. 

 State of the art  

The concept of RAN slicing at different levels is introduced in [48], where each defined level provides a 

specific degree of granularity in the assignment of radio resources, isolation and customization. The different 

ways to manage and orchestrate the resources in the RAN is key for RAN slicing provisioning. In this way, the 

spectrum allocation at the scheduler level is investigated in several works [144][145]. The scope of these 

works lies on the dynamic resource allocation to cope with the traffic dynamics. At the spectrum planning 

level, the work in [146] proposes a spectrum planning scheme that maximizes the spectrum utilization. 

The existence of multiple WATs, especially in private network scenarios, is also a key aspect in the 

management of RAN slices. In [147] the general characteristics of Wi-Fi and VLC (or LiFi) are described. The 

authors explore the existing research activity in this area and demonstrate a practical framework in which 

both technologies can coexist. In [148], a novel performance analysis is carried out taking the system-level 

dynamics into account and thus giving a true account on the uplink performance gains of an integrated multi-

WAT solution versus legacy approaches. They also advocate for an enabling architecture that embodies the 

tight interaction between the different WATs and provide 3GPP-compliant simulations to corroborate the 

mathematical analysis. 

With the aim of providing isolation, some works have studied how to implement RAN slicing in Wi-Fi 

networks using virtualization techniques. In [53], a scheduling algorithm is developed to allocate airtime 

quotas to a set of virtual interfaces executing on the same or in different physical radios. In [149], a virtualized 

Wi-Fi network hypervisor based on a time variant radio resource sharing mechanism is presented. Based on 

the Cloud-RAN paradigm, in [150], Wi-Fi-based DUs are managed through the same CU instance that is used 

to manage 3GPP nodes. Then, a policy selection mechanism decides on the desired WAT. 

In addition to the previous works, some 5G PPP projects have also considered multiple technologies (such as 

LTE, 5G and Wi-Fi) in network slicing. However, none of them handles with LiFi as a possible WAT. Specifically, 
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5G GENESIS [151] will use Surrey Platform to demonstrate the effective massive IoT and multimedia 

communication in multi-WAT environment. In this scenario, 5GNR, LTE-A, Wi-Fi, NB-IoT and LoRa are 

deployed. To address the resource management issue in disaggregated and heterogeneous RANs, 5G 

PICTURE adopts a Radio Control Function (RCF) to manage RAN functions according to the tenant’s SLA [152] 

Regarding the AT3S functionality [92], little research is carried out on this topic so far. In [153], an 

implementation of multiple-access PDU session to support AT3S in 5G mobile network is presented. 

On the other hand, Artificial intelligence (AI) has been successfully applied for resource management in the 

context of network slicing. In [154], an AI-enabled 5G network architecture is proposed to adjust service 

configuration and control based on changes in user needs, environmental conditions and business goals. 

Some interesting AI techniques that have recently been applied to resource allocation of slices are RL [155], 

deep RL [156][157][158][159], deep learning neural networks [160][86] and evolutionary algorithms [161]. 

These techniques are particularly effective in handling complicated control problems. 

Artificial Intelligence is of such an importance for future 5G networks management that several SDOs and 

industrial forums are investigating AI and ML techniques to make autonomic decisions by processing huge 

amounts of data and learning from operations. Some of these SDOs are ITU Focus Group on Machine 

Learning for Future Networks including 5G (FG-ML5G) [162], established in November 2017 to study network 

architectures, protocols, interfaces, use cases, algorithms and data formats for the adoption of ML in future 

networks; and ETSI Industrial Specification Group (ISG) “Experiential Network Intelligence” (ENI) [163], 

created in February 2017 with the purpose of defining a cognitive network management architecture based 

on the “observe-orient-decide-act" control model. 

The Supplement 55 to ITU-T Y-series Recommendations [164] analyzes a set of use cases of ML in future 

networks, providing the most relevant requirements related to them. Such use cases are also classified into 

the following five categories: (i) network slice and other network service-related use cases, (ii) user plane 

related use cases, (iii) application related use cases, (iv) signaling or management related use cases and (v) 

security related uses cases. Within the first of the aforementioned categories, radio resource management 

for network slicing use case is described, focusing on the requirements related to data collection, data 

storage and the application of the ML output, among others. 

 5G-CLARITY initial design 

In network slicing it is essential to allocate to each slice the needed resources. The mechanism to adapt to 

load and other system variations in an automatic manner is known as resource elasticity [154]. Specifically, 

the allocated resources at each time should match the demand as closely and efficiently as possible. There 

are different time scales at which the system is adapted to traffic changes in a network slice. At low time 

scales or real-time (around 1 ms), the MAC scheduler assigns radio resources to each UE according to, e.g., 

buffer status, channel quality, QoS priority, etc. At medium time scales (below 1 s), mechanisms such as the 

near-real-time RIC [165] provides near-real-time radio resource allocation on a UE/slice basis via fine-grained 

data collection from different layers of the protocol stack. The periodicity of these actions is such that the 

near real-time RIC needs to be co-located with the gNB CU. Lastly, at higher time scales (above 1 s), 

mechanisms such as the non-RT RIC [165] or algorithms residing in the management and orchestration 

system of the operator network can provision network slices with enough resources to cope with long-term 

traffic variations and other system events. In this case, there should be a resource reservation for a given 

slice that is shared by all the UEs attached to the slice and is valid during a certain time interval. Consequently, 

the management and orchestration system should provide optimized elastic resource provisioning to 

network slices. Unlike the resource allocation at lower time scales, in non-RT, the allocated resources are 

not necessary physical resources. For example, they can be expressed as virtual radio resources or defined 

as quotas. 
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Specifically, the main network dynamics occurring at a non-RT scale are due to the user behaviour and 

mobility pattern, resulting in spatio-temporal variations of the traffic demand. For example, there can be 

differences in the user mobility between working hours and off-working hours in a day. To cope with such 

dynamics, the network requires a periodical re-distribution of the available resources among the network 

slices. In a multi-WAT environment, the resource provisioning can also be supported by an efficient load 

balancing between WATs. In addition, such a re-distribution may also consider key aspects such as the 

operator’s policies related to resource management (e.g. energy saving policies). To carry out the network 

adaptation, the intended 5G-CLARITY algorithm should follow a closed loop automation strategy, comprising 

a continuous process that monitors, measures, and evaluates network traffic and then automatically acts to 

optimize the resource provisioning. The algorithm should perform these tasks periodically, so that the 

provided network configuration is optimal for the given operator’s policies and the average traffic demand 

in a time period. In each period, the traffic demand may still suffer non-RT variations due to the user 

behaviour and mobility pattern (e.g. a person walking down a street). The network can react to this kind of 

changes relying on specific resource allocation mechanisms designed for this purpose. For example, the 3GPP 

defines the concept of “float quota” in 5GNR to enable dynamic resource allocation. In particular, the 

network should be able to transfer resources, i.e. Physical Resource Blocks (PRBs), from one slice to another 

when the former does not need them. The configuration of maximum and minimum quota, as well as 

possible quota margins, should be performed by the proposed 5G-CLARITY algorithm. Lastly, a resource 

provisioning algorithm is required to manage the (de-)activation of network slices. Such an algorithm should 

be eventually executed to re-distribute resources between new slices and other slices in progress. It may 

also serve to cope with the loss of optimality accumulated by adaptive resource allocation algorithms after 

successive configuration updates. However, its design is out of the scope of this work. Figure 4.13 illustrates 

the scope of the proposed 5G-CLARITY algorithm. The targeted parameters defining resource quotas depend 

on the respective WAT (e.g. number of PRBs, percentage of airtime). For simplicity, only 5GNR parameters 

are shown in the figure. The frequency of the actions performed by the algorithm are assumed to be in the 

order of minutes or hours. Consequently, the proposed algorithm can be considered as a non-real time 

procedure in the 5G-CLARITY system. 

 

Figure 4.13 The scope of the 5G-CLARITY resource provisioning in a multi-technology RAN. 

The 5G-CLARITY wireless network is composed of several WATs and supports the AT3S functionality, 

involving traffic steering, splitting and switching [166]. According to this, the proposed algorithm handles the 

resource provisioning between slices and load balancing across different WATs. To this end, the following 

information should be considered for every network slice: 

 Required capacity for guaranteed bit rate (GBR), delay critical GBR or non-GBR (per terminal/slice). 
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 Maximum packet size. 

 Area of service. 

 Maximum number of terminals. 

 Quality-of-Service (5QI). 

 Supported device velocity. 

 Isolation (physical or logical). 

 Radio resource management (RRM) policies and related parameters (e.g. percentage of resources, 
strict or float quota). 

 AT3S policies and related parameters (e.g. routing factor). 

Some of this information can be found in the slice template as part of the SLA and is handled by the Slice 

Manager. The 3GPP has proposed different AT3S policies to take advantage of the multi-WAT network. From 

a resource provisioning perspective, the intended algorithm should consider traffic steering and traffic 

switching policies. Some examples are:  

 Traffic steering with best-performance configuration (TST-BP). 

 Traffic steering with active-standby configuration (TST-AS). 

 Traffic steering with priority-based configuration (TST-PR). 

 Traffic splitting with a routing factor (TSP-RF). 

 Traffic splitting with redundancy configuration (TSP-RE). 

 Traffic splitting with load balancing (TSP-LB). 

The traffic switching feature is less relevant for resource provisioning as its main purpose is to provide 

seamless handover. To re-distribute the resources according to the needs of each slice, the intended 

algorithm also requires as inputs KPIs and network measurements. This information is periodically gathered 

by the Telemetry system and accessed by the 5G-CLARITY algorithm for continuous monitoring. Some 

important metrics are those related to throughput (per user, per slice, per WAT, etc.), resource consumption 

(e.g. PRB usage) and the number of active users (per slice, per node, etc.). Other relevant information for 

resource provisioning is related to network configuration, e.g. the transmit power, number of channels and 

bandwidth of the access nodes. 

Based on the network measurements, the intended algorithm should evaluate whether scaling up or down 

the slice resources or redistributing loads among cells is required to meet the traffic demands. Different 

network parameters can be used to re-distribute the resources among network slices. In particular, the 

resource quota determines the amount of resources allocated to each slice. Depending on the respective 

WAT, this parameter can be defined in terms of number of PRBs, number of channels, percentage of airtime, 

etc.). The distribution of resources should be made in conjunction with an efficient load balancing among 

WATs. In the access nodes, parameters such as the transmit power of pilot levels allows to control the traffic 

loads in a simple way. However, with the introduction of AT3S, a greater number of parameters can be 

employed to distribute such loads. These are the most representative for each AT3S policy: 

 Best performance metric, e.g. received signal level, round-trip-time, etc. (TST-BP) 

 Preferred WAT, e.g. 5GNR, Wi-Fi or LiFi (TST-AS) 

 Priorities and congestion threshold (TST-PR) 

 Routing factor (TSP-RF) 

 SINR threshold, below which the policy is triggered (TSP-RE) 

 Balance point, e.g. equal load (TSP-LB) 
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While the TST-x policies allow to control the number of users served by a given WAT, the TSP-x policies allow 

to distribute the traffic load of each user across different WATs. These inter-WAT load balancing capabilities 

can be integrated into the resource provisioning procedures in order to maximize the resource usage 

efficiency. 

Figure 4.14 shows the block diagram of the proposed 5G-CLARITY algorithm from a design perspective. The 

closed loop automated slice provisioning can be seen as a controller that distributes the resources and traffic 

loads as a function of the current traffic demands and SLAs. To improve the effectiveness of the method, the 

re-distribution of resources can be carried out taking into account the high-level operator’s policies. In 

particular, the controller’s configuration can be adjusted by an optimizer responsible for driving its operation 

according to the operator’s high-level goals. Consequently, the algorithm can follow an optimizer/controller 

approach, where the optimization framework can be based on deep reinforcement learning. This technique 

focuses on how to interact with the environment by trying alternative actions and reinforcing the actions 

producing more benefit in the long run. The resource provisioning controller should be composed of a set of 

rules and parameters representing the knowledge base. The operation would be as follows: given an 

evaluation of the performance indicators and the SLA parameters at a certain time, the controller should 

adjust the radio parameters (e.g. resource quotas) based on its knowledge base. Then, the optimizer should 

modify the controller behavior in order to meet the operator’s business intents. Such business intents or 

high-level goals should be translated to a mathematical expression called the reward, which can be 

composed of different metrics gathered from the Telemetry system. Given an evaluation of the reward, the 

optimizer should update the learned function and adjust the controller behavior (i.e. rules, parameters, etc.) 

based on the learned function.  

Training in reinforcement learning involves an agent interacting with its environment. The proposed 

algorithm should follow a model-free approach where the agent learns directly from episodes of experience 

in the live network. However, to speed up the training process, the intended method will be trained with a 

RAN simulator. The simulated scenario should include a multi-WAT multi-slice network. To support the 

offline training, the RAN simulator should be computationally efficient. The RAN simulator and the intended 

ML-based algorithm will be implemented using MATLAB since this tool is appropriate for mathematical 

programming and computation with matrix algebra. However, it may also be considered the implementation 

of the algorithm using general-purpose programming language such as Python through libraries that are 

specifically designed for efficient computation of ML algorithms. In particular, an interesting Python library 

related to reinforcement learning is KerasRL [167], which implements deep reinforcement learning 

algorithms and works with OpenAI Gym toolkit. Another library is Tensorforce [168], which also includes an 

open-source deep reinforcement learning framework and is built on top of Google’s TensorFlow framework.  

The intended algorithm will be evaluated using a RAN simulator and, if applicable, it will be implemented 

and evaluated in the 5G-CLARITY pilots. The same performance indicators used by the algorithm, but not 

limited to them, could be used for evaluation purposes. The performance of the method can be compared 

to static approaches of resource provisioning. Some reinforcement learning parameters of the intended 

algorithm could be evaluated, such as the discount rate that determines the relative importance of future 

rewards and the learning rate. In addition, different behaviours of the algorithm with a particular trade-off 

between exploration and exploitation as well as the consideration of different business goals could be 

evaluated. 
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Figure 4.14 Block diagram of the 5G-CLARITY resource provisioning in a multi-technology RAN. 

4.9 Dynamic transport network setup and computing resources provisioning  

 Problem statement  

Main enablers of network softwarization are NFV and SDN frameworks. Allowing network operators to 

automate the resource provisioning and configuration of their networks to meet the required E2E (E2E) 

performance continuously with agility and in a cost-effective way. Three of the management tasks that 

impact most on the Quality of Service offered by a softwarized network service (SNS) are the following: 

 SNS autoscaling: it refers to the process of deciding the amount of computing resources (e.g., CPU 

cores, RAM, disk) to be allocated to constituent Virtual Network Function of the SNS so that the SNS 

target processing performance levels are fulfilled given the foreseen traffic load.  

 SNS embedding: it refers to the process of deciding the specific physical resources, i.e., specific (e.g., 

servers, in which the constituent VNFs instances of the SNS are deployed as either hosted inside 

virtual machines or OS containers. This process might be subject to meet some constraints such as a 

bound on the propagation delay and affinity (e.g., two VNFs must run on the same PM). 

 Transport network (TN) optimization: it refers to the process of taking the following decisions: 

o The path(s) connecting every pair of VNFs source and destination, i.e., the set of bridges to 

transport the streams between every pair of end stations. There might be required multiple 

disjoint paths to assure the reliability constraint imposed by the services. Please note that 

here we assume a L2 network technology to provide connectivity among network functions. 

This decision depends on the objectives and constraints indicated below.  

o The configuration of the flow control mechanisms at every output port of the involved 

network devices. The flow control refers to how the frames are handled at every bridge 

output port for a given traffic class. This process involves the configuration of the output 

ports operation to ensure the QoS requisites of the streams. For instance, considering 

networks with QoS support, the priority for each traffic class must be decided.  

o The network resources (e.g., link capacities) to be allocated to each stream to guarantee its 

QoS requisites.  

The above three processes are coupled as the distribution of the E2E performance budgets among them 
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might significantly affect the degree of optimality achieved. By way of illustration, the more stringent the 

SNS response time constraint is, the higher the amount of computational resources allocated to the SNS will 

be. Then, if our objective is to minimize the required amount of computational resources, it is desirable to 

assign a lenient delay budget to the SNS processing time. On the other hand, severe performance constraints 

for the SNS embedding and transport network optimization make it challenging to find feasible embedding 

and TN configuration solutions. 

Here we address the optimization of the three processes listed above in a coordinated way for the SNSs of 

the different network slices running in the 5G-CLARITY ecosystem. The underlying infrastructure considered 

consists of two clouds (e.g., RAN cluster and edge cluster) interconnected through an Ethernet-based Time-

Sensitive Networking (TSN) network. Here, we consider a multi-objective optimization problem to find a 

proper balance between the flow acceptance ratio and energy consumption. This problem is subject to the 

following constraints:  

 The assurance of the QoS requirements for the distinct traffic types to be supported.  Specifically, 
the QoS requisites considered are a minimum throughput, E2E maximum delay, and jitter budgets, 
a maximum packet loss, and a minimum reliability level.  

 Technology constraints such as the available physical resources at the different servers within the 
clouds, the capacity of the TN links, and the available buffer size at each TN bridges’ output por.   

 State of the art  

There is a vast literature leveraging Machine-Learning (ML) techniques for dealing with the automation of 

the daily task management in cloud computing [169]. Typical management tasks are workload prediction, 

dynamic application, and services scaling (also known as resource provisioning), network functions 

placement, and load balancing. By way of illustration, in [170] and [171], ML techniques are used for traffic 

workload forecasting for the resource provisioning of a Network Slicing Orchestration System and elastic 

Cloud services, respectively. The predicted workload is used to fed queueing models that translate it into 

required resources given the service response time specified in the Service Level Agreement (SLA). There are 

also proposals for the network services auto-scaling entirely based on machine learning [172][173]. The 

authors in [172] employ Q-Learning for VNFs scaling. Whereas in [173], the authors propose a topology-

aware graph neural network for the proactive scaling of chains of VNFs.  

Regarding the flow allocation, fewer works are addressing the problem using ML techniques. There are two 

pioneer works on applying machine learning techniques for tackling the flow allocation problem in Time-

Sensitive Networking (TSN) [174] and [175]. Indeed, TSN is a candidate scenario that can benefit from ML. 

That is because of the large number of possible configurations offered by TSN networks. Both works [174] 

and [175] put stress on the importance of carrying out a validation process of the ML decisions via worst-

case performance models. Otherwise, the solution is not fully reliable. In the TSN context, a configuration 

for a set of flows is valid when it yields the fulfilment of the performance constraints for all the flows. In 

[174], the authors explore both supervised and unsupervised learning for configuration feasibility check or 

validation in Time-Aware Shaper (TAS)-based TSN networks. The motivation is that precise schedulability 

analysis for these networks might be computationally heavy. In this way, a binary classifier could be used 

during configuration optimization processes. In this scenario, unsupervised ML methods are more practical. 

That is because the labelling process (feasibility or non-feasibility for each configuration) might be 

computationally heavy, as mentioned. In [175], the authors propose a Reinforcement Learning (RL)-based 

solution, dubbed LEARNET, for the flow allocation in Asynchronous Traffic Shaper (ATS)-based TSN networks. 

They check the feasibility of every action issued by the agent. The output of this check impacts on how the 

agent is rewarded. Then, the knowledge of the performance models is transferred to the agent, and the 

solution becomes fully reliable.   
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Although there are several ML-based proposals for addressing the everyday management tasks in clouds, 

they focus on a specific problem. Nonetheless, the coordination of the different management tasks using ML 

seems unexplored yet. Also, most of the solutions proposed in the existing works focus on the delay 

constraint assurance, but they do not take into account other performance metrics such as reliability, jitter, 

and packet loss. On the other hand, the application of ML for the flow allocation is still in its infancy. In the 

context of TSN, two pioneer works propose ML-assisted flow allocation solutions. However, several 

challenges lie ahead, such as achieving scenario-agnosticism or testing the solutions in more extensive 

networks. Furthermore, it has been proven that the use of standard optimization techniques such 

Satisfiability Modulo Theories (SMT) fail to cope with the combinatorial complexity to find feasible 

configurations for TSN networks. 

 5G-CLARITY initial design  

The algorithm described here aims to find a balance between the flow acceptance ratio and infrastructure 

energy consumption. To that end, it dynamically adapts to the foreseen traffic loads by setting up the 

compute quota (e.g., number of virtualized CPUs, number of virtualization containers, and RAM), transport 

quota (e.g., network capacity and buffer sizes), the embedding of the VNFs for each 5G-CLARITY slice. All of 

this subject to satisfying the performance constraints imposed by the different traffic types and the available 

resources at the infrastructure stratum for both domains the TN and computing. The algorithm deals with 

the workload fluctuations at high time scales, i.e., time frames from several minutes to hours. Then, the 

algorithm can be regarded as non-RT, i.e., there is no deadline associated with its execution, or the timing 

constraint to run it is lenient as the frequency of the algorithm’s actions is within the same time scale as the 

workload fluctuations. For instance, the traffic load fluctuations mentioned above might be due to the 

different activities carried out by an industrial site throughout the day and people’s behaviour (e.g., workers 

or customers). Reactive algorithms might be used to cope with workload fluctuations at short time scales, 

though that problem is not addressed here. Besides, all the required state information to optimize the 

network configuration is available before each algorithm run. In this sense, we are considering an offline 

algorithm to tackle the problem.  

The bottom layer of Figure 4.15 sketches the 5G-CLARITY’s physical infrastructure considered. There are two 

clouds, namely RAN Cluster and Edge Cluster. The former might include hardware accelerators like Field 

Programmable Gate Arrays (FPGAs) and Graphic Processing Units (GPUs) to meet the processing time 

budgets imposed by the virtualized 5G New Radio functions (e.g., gNB-DU and gNB-CU).  Time-Sensitive 

Networking (TSN) is considered as L2 technology for the transport network (TN). TSN can provide the 

deterministic QoS required by critical services while enabling their coexistence with non-performance 

sensitive traffic.   
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Figure 4.15: Initial design for the ML-based dynamic transport network setup and computing resources provisioning 

solution. 

The proposed solution to address the problem stated in Section 4.9.1 combines ML approaches and 

analytical model-based techniques. ML is used to deal with the complexity of the optimization process, while 

the analytical models for facilitating and speeding up the training process and validate the feasibility of the 

actions issued by the ML agents, i.e., checking whether a given action meets the E2E performance 

requirements. There are some performance metrics, such as the E2E performance metrics that are difficult 

to measure on-live from the network. The reason for that is that the worst-case network performance is 

given by corner cases, which are unlikely to happen. In this regard, analytical models are a practical solution 

to predict the worst-case performance of the network quickly and with low complexity, thus easing the 

training process. 

On the other hand, the validity of the actions issued by the agents is uncertain. Then, the analytical models 

are the cornerstone to filter the unfeasible actions (i.e., those that do not guarantee the QoS requisites of 

the distinct traffic classes) and ensure the full reliability of the decisions taken. On the other hand, ML is 

required for handling the complexity of the optimization process as analytical-based optimization techniques 

struggle to cope with it. For instance, it might take several hours to find a feasible solution for a medium-

scale TSN network using SMTs 

The initial solution consists of a multi-agent architecture, where there are a set of ML agents specialized in 

the different decision processes (see Figure 4.15). In principle, deep reinforcement learning (RL) is considered 

as ML technique to implement the agents. There is an RL agent per each decision process listed in Section 

4.9.1, namely, resource scaling agent (RSA), network embedding agent (NEA), and TN optimizer (TNO). 

Besides, there is a delay distribution agent (DDA) responsible for distributing the E2E delay and jitter budgets 

between the three decision processes to realize their coordination. The RSA, NEA, and TNO are fed with the 

DDA outputs and other inputs of interest such as: 

 Nodes and links time-to-failures. 

 Temporal profile demand per 5G-CLARITY slice, per 5QI, and per source/destination pair. 

 Traffic characteristics per 5QI (e.g., moments for the data rate process). 
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 Processing time distributions for every VNF/Service app. 

 Network topology. 

The algorithm running at the AI engine obtains most of the above information through the management 

plane (see Figure 4.15). The foreseen temporal traffic load profiles are provided by an auxiliary ML-based 

workload predictor, which, in turn, collects timestamped samples of the workload from the telemetry system 

to learn them.  

The agents issue their respective actions for allocating the compute and transport resources, embed the 

virtualization containers, and configure the TSN TN. These actions are filtered through the use of analytical 

performance models to check their feasibility. Furthermore, the same models assist the computation of the 

reward for the agents. If the actions are valid, they are forwarded to the respective management plane 

entities to be applied to the network, and the agents are positively rewarded. Otherwise, they are rejected, 

and the agents must search for an alternative configuration. The outputs of each agent are listed below: 

 RSA: This agent's action by this agent is forwarded to the NFVO and later applied by the VIM. 

o The compute resource quotas for every VNF of each 5G-CLARITY slice. 

 NEA: The action issued by this agent is sent to and applied by the VIM. 

o The mapping between VNF instances and the physical machines or servers.  

 TNO:  The actions issued by this agent are sent to the SDN controller and later applied by the TSN 

Central Network Controller (CNC).  

o The translation of the 5QIs into IEEE 802.1Q traffic classes for each 5G-CLARITY slice.  

o Aggregated transport resources (e.g., link capacities and buffer sizes) per traffic class and 

per 5G-CLARITY slice.  

o Paths allocated for each 5G-CLARITY slice. 

o Output port configuration of the TSN bridges, e.g., gate control list and time windows size. 

For the initial training process, we will employ a simulator of a 5G SNPN with the infrastructure shown in 

Figure 4.15 and synthetic temporal traffic profiles resembling those expected in 5G private network scenarios 

similar to 5G-CLARITY UC-1. As pointed out previously, the analytical performance models will assist the 

training process in order to determine the worst-case performance metrics given a workload and a network 

configuration. Figure 4.16 shows and summarizes the workflow of the initial solution for the dynamic 

transport network setup and computing resources provisioning. 

 

Figure 4.16: Workflow of the AI-assisted solution for the dynamic transport network and computing resources 

provisioning. 
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Finally, the experimentation and evaluation process of the solution will consist of the following parts: 

 Study on the optimal ML hyper parameters configuration.  

 Solution performance assessment. To that end, we will measure through simulation the degree of 

optimality achieved while checking the target E2E performance requirements are met all the time.   

 Solution performance comparison. The most relevant SotA solutions will be implemented and their 

performance compared against the proposed solution. 

4.10 Adaptive AI-based defect-detection in a smart factory  

 Problem statement  

This use case considers a production line in a smart factory such as the one targeted in 5G-CLARITY for the 

Bosch use case. The production line is composed of machines that may be fixed or mobile (e.g. robots, robot 

arms, etc.) acting continuously or on-demand on the line. Additional sensors including video cameras are 

used for real-time monitoring and subsequent intervention by the machines, e.g. to stop the line or to 

remove a defective product. Such intervention by the machines is typically instructed/commanded by a 

remote factory worker acting upon real-time data received from the sensors and cameras over a 

local/private or wide area network (e.g. through a 5G network). The machines and devices in the smart 

factory are assumed to have capabilities for networking, computing, and storage. The computing capability 

on the local machines and devices in the factory can support distributed data telemetry and intelligent 

functionalities locally. Numerous cameras and sensors, with the possibility for some cameras to be on-wheels 

(e.g. carried by guided vehicles), are continuously monitoring the production line. These cameras and sensors 

are capable of data storage, fast data analysis, including extracting and capitalizing on the corresponding 

knowledge in real-time. Running Federated Learning across multiple devices allows fast and accurate data 

analysis. These functions help in detecting more efficiently and quickly characteristic patterns that allow the 

recognition of potential defects in the production line. 

These local capabilities are leveraged together with additional (more sophisticated but mostly fixed) 

capabilities available in the E2E infrastructure (e.g., telco edge, distant cloud) connecting the smart factory 

to the remote digital worker. Detection of a defective piece triggers a remote worker to command an 

intervention by some machines (e.g., robots or robotic arms) to stop the line or take the defective piece out 

of the production line to a certain destination. Such immediate intervention implies real-time processing and 

visualization of geometric features for manufactured parts at the remote worker location. Clearly the sooner 

a piece is detected as defective and taken out of the production line, the less scrap will be generated. 

Moreover, the faster the pieces are analysed, more pieces can be produced in each period. 

The algorithm used for defect detection typically follows a framework for designing and training deep neural 

networks (DNN), such as for example the Yolov3 algorithm "you only look once" (YOLO). The choice of the 

detection algorithm and its AI training model depends on the characteristics and capabilities of the resources 

deployed for both the training and inference environments. These characteristics may vary dynamically and 

therefore an adaptation to the algorithm and/or its training model, as well as where it is instantiated, may 

be required to achieve low latency and energy efficient deployment. 

The problem solved here is therefore to drive an adaptive low latency and energy efficient AI-powered defect 

detection based on the telemetry collected from the various devices and nodes involved in the 

communication and computing infrastructures as depicted in Figure 4.17. 
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Figure 4.17: Defect-detection in smart factory. 

 5G-CLARITY initial design 

Analytics and intelligence are using telemetry and video-based inference to provide insights from operations 

that are occurring in the smart factory network. The telemetry may include system state, logs, configurations 

or other text / binary data. Some of the telemetry may be unstructured and stored as it has been received 

and other telemetry may be strictly based on standard models. Real-time telemetry can be a collection of 

measurements or other data in real-time at remote nodes and automatic transmission of the data. The nodes 

that are transmitting real-time telemetry are counterpart of telemetry deployed either at the edge or at 

cloud. Real-time telemetry may be consumed also non-RT functions, for instance in data lake scenario. 

Video analytics consist of inference performed on the video stream and analysis of those inference results. 

The video analytics are combined with the telemetry models in order to provide a specific, or overall view of 

the system allowing defect detection to perform actions that are intelligent in the case when faults occur or 

when collecting insights from the collected data. 

Figure 4.18 depicts the workflow for the 5G-CLARITY initial design for the intelligence-based defect detection 

module showing the key interactions amongst the different entities: 

 Step 1: In a first step, the sensory (including camera) data together with measurements data are sent 

from various devices to the network via for example one or multiple 5GNR modems. 

 Step 2: Some user data and network (including UE modem) telemetry data is passed to an Edge platform. 

This edge platform includes the defect detection application responsible of the inference. It also includes 

a telemetry agent from the edge to collect the various telemetry data and aggregate it and pass it further 

up to the data pool or data lake for processing. 

 Step 3: Various telemetry data from the applications, network functions and entities, and edge computing 

hosts, are passed on to the data lake for storage and pre-processing.  

 Step 4: The telemetry data, after pre-processing, is presented in the form of datasets for training or 

updating the training of different AI models. 

 Step 5: The AI model is trained or retrained. 
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 Step 6: The new AI model, adapted to the actual telemetry data is then obtained.  

 Step 7: The output AI model is passed on to the infrastructure orchestration for deployment. 

 Step 8: The orchestration and control instantiate the inference algorithm in the edge platform and 

instructs for any update to the telemetry collection. 

 Step 9: The inference is carried out by the defect detection application in the edge, and the result is 

passed to the control applications of the end devices including sensors, cameras and processors. 

 Step 10: The various edge controller applications finally instruct the various devices to execute certain 

actions including change of configurations.  

 

 

Figure 4.18: Workflow of the 5G-CLARITY solution for defect detection. 
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 AI Engine  

To benefit from scalable and flexible machine learning in support of network management functions, 5G-

CLARITY requires an ML platform that is in line with 5G-CLARITY’s (5G-PPP’s) service-oriented objectives. The 

AI engine fills that role, providing a cloud-native platform that hosts ML models as containers for seamless 

scaling and flexible development and deployment. 

5.1 Requirements for an AI/ML engine in 5G-CLARITY 

The AI engine component is part of the Intelligence Stratum introduced in Deliverable D2.2 [2], and will be 

designed according to the following requirements: 

1. Use of open source to minimise costs for the 5G-CLARITY research project, avoid vendor lock-in solutions 

and allow customization. 

2. Minimal overhead for installation and long-term maintenance to minimise the effort and corresponding 

costs towards a feasible research prototype 

3. Packaging of ML models as a format that enables seamless deployment into near real-time RIC 

component operating in the RAN cluster, which supports containerised xApps. The interested reader is 

referred to 5G-CLARITY D3.1 [3] for an introduction to the near real-time RIC and the xApp framework. 

4. Enable experimentation with cutting edge and custom ML algorithms beyond state-of-the-art algorithms 

5. Allow for training of ML models to be inside or outside the private venue, e.g. in a public cloud with 

enough training resources. 

6. Enable the lifecycle management of ML models, including instantiation, removal, update of ML models. 

7. Provide a registry for ML models for ML service discovery 

8. Enable access to ML functions to non-expert private network operators 

5.2 State of the art on AI engines 

We review in this section the relevant SotA on the introduction of AI functions in mobile networks. To this 

end we first analyse the efforts being done by standard development organizations in Section 5.2.1 and then 

look at the ML platforms available in the market in Section 5.2.2 

 Standardization frameworks 

5G networks are facing the challenge of increased complexity due to the increased numbers of configuration 

parameters, deployment options and corresponding key KPIs such as data rates, latency, reliability, and 

connection density. AI provides a powerful tool to help operators manage this complexity and better 

optimize their network performance and automate its operations. For AI tools to work, there is need for a 

framework to i) make available datasets relevant for training and updating the various AI algorithms; ii) 

define the necessary interfaces in the system for integration of the AI algorithms; and iii) help derive new 

system requirements and therefore new design by accounting of the impact AI tools would have on different 

parts of the system. In this spirit, various industry forums and standardization organizations such as ITU-T, 

ETSI, 3GPP, O-RAN, have been studying the way to integrate AI into their existing and future networks. Below 

we present a brief survey of the work carried out in key forums namely ITU-T ML5G Focus Group, ETSI ENI 

ISG, 3GPP and O-RAN. 
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 ITU-T ML5G focus group 

The ITU-T ML5G (Machine Learning for 5G and Beyond) Focus Group has been active in drafting technical 

specifications for ML for future networks, including interfaces, network architectures, protocols, algorithms 

and data formats. The following specifications have been developed: 

 “Architectural framework for machine learning in future networks including IMT-2020" (ITU-T 
Y.3172, January 2020) 

 "Machine learning in future networks including IMT-2020: use cases" (Supplement 55 to Y.3170 
Series, October 2019) 

 "Framework for evaluating intelligence level of future networks including IMT-2020: use cases" (ITU-
T Y.3173, February 2020) 

 "Framework for data handling to enable machine learning in future networks including IMT-2020: 
use cases" ( ITU-T Y.3174, February 2020) 

 Draft ITU-T Recommendation (progressed in ITU-T SG13): "ML marketplace integration in future 
networks including IMT-2020" 

 "Requirements, architecture and design for machine learning function orchestrator" 

 "Serving framework for ML models in future networks including IMT-2020" 

 "Machine Learning Sandbox for future networks including IMT-2020: requirements and architecture 
framework" 

 "Machine learning based E2E network slice management and orchestration" 
 "Vertical-assisted Network Slicing Based on a Cognitive Framework" 

All the above specifications are quite relevant to the AI engine design in 5G-CLARITY and therefore constitute 

a reference framework to build on. These specifications have also been taken as reference for the 

intelligence framework in industry forums like O-RAN. 

 ETSI ENI industry specification group 

ETSI ENI ISG has been developing specifications for leveraging AI techniques like machine learning and 

reasoning in the network management system. The ISG has been active since 2017 and is completing its 

second two-year cycle focused on data and action interoperability. A plan for third two-year cycle is 

underway and the ISG is anticipated to continue to be active in 2021-2022. The scope of this third cycle is 

not publicly available at this stage of writing this document. It is also noteworthy a workshop2 “ENI-Machine 

Learning in communication networks” organized on 16th March 2020 between two ETSI ISGs, namely ENI and 

SAI (Securing AI), and ITU-T’s Q20/13 and FG ML5G “Machine Language 5th Generation”, on AI/ML. This 

workshop was instrumental in enabling synergies between ETSI ENI and SAI and the ITU-T ML5G which are 

now set on track to collaborate and complement each other. The following specifications and reports have 

been published from the Release 2:  

 ETSI GS ENI 001 V2.1.1 (2019-09): Use Cases 
 ETSI GS ENI 002 V2.1.1 (2019-09): Requirements 
 ETSI GR ENI 003 V1.1.1 (2018-05): Context-Aware Policy Management Gap Analysis 
 ETSI GR ENI 004 V2.1.1 (2019-10): General Terminology 
 ETSI GS ENI 005 V1.1.1 (2019-09): System Architecture 
 ETSI GS ENI 006 V2.1.1 (2020-05)V2.1.1 (2020-05)V2.1.1 (2020-05): Proof of Concept (PoC) 

Framework 
 ETSI GR ENI 007 V1.1.1 (2019-11): Definition of Categories for AI Application to Networks 

The Use Cases ENI 001, Requirements ENI 002, Terminology ENI 004 and System Architecture ENI 005 are all 

                                                           

2  https://www.etsi.org/newsroom/blogs/entry/eni-13-progressing-release-2-and-etsi-itu-t-workshop-eni-machine-learning-in-

communication-networks 

https://www.itu.int/rec/T-REC-Y.3172-201906-I/en
https://www.itu.int/rec/T-REC-Y.Sup55-201910-I
https://www.itu.int/rec/T-REC-Y.3173-202002-I
https://www.itu.int/rec/T-REC-Y.3174-202002-I
https://extranet.itu.int/sites/itu-t/focusgroups/ML5G/_layouts/15/WopiFrame.aspx?sourcedoc=%7bFF1D3964-1562-41FF-B710-D0674281764F%7d&file=ML5G-O-038.docx&action=default
https://extranet.itu.int/sites/itu-t/focusgroups/ML5G/_layouts/15/WopiFrame.aspx?sourcedoc=%7bCF7FF25F-49E9-4EB3-B3E5-EFDB8FD93F57%7d&file=ML5G-O-036.docx&action=default
https://extranet.itu.int/sites/itu-t/focusgroups/ML5G/_layouts/15/WopiFrame.aspx?sourcedoc=%7bDE867B22-A47D-4261-9A74-9F89DE6EF69C%7d&file=ML5G-O-035.docx&action=default
https://extranet.itu.int/sites/itu-t/focusgroups/ML5G/_layouts/15/WopiFrame.aspx?sourcedoc=%7bDE867B22-A47D-4261-9A74-9F89DE6EF69C%7d&file=ML5G-O-035.docx&action=default
https://extranet.itu.int/sites/itu-t/focusgroups/ML5G/_layouts/15/WopiFrame.aspx?sourcedoc=%7b9572D359-9A94-4AF4-BD93-FD25CB175841%7d&file=ML5G-O-037.docx&action=default
https://extranet.itu.int/sites/itu-t/focusgroups/ML5G/_layouts/15/WopiFrame.aspx?sourcedoc=%7bA3B49DCC-CEFA-4ED6-9B4F-65099CE10D26%7d&file=ML5G-O-039.docx&action=default
https://www.etsi.org/deliver/etsi_gs/ENI/001_099/001/02.01.01_60/gs_ENI001v020101p.pdf
https://www.etsi.org/deliver/etsi_gs/ENI/001_099/002/02.01.01_60/gs_ENI002v020101p.pdf
http://www.etsi.org/deliver/etsi_gr/ENI/001_099/003/01.01.01_60/gr_ENI003v010101p.pdf
https://www.etsi.org/deliver/etsi_gr/ENI/001_099/004/02.01.01_60/gr_ENI004v020101p.pdf
https://www.etsi.org/deliver/etsi_gs/ENI/001_099/005/01.01.01_60/gs_ENI005v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/ENI/001_099/006/02.01.01_60/gs_ENI006v020101p.pdf
https://www.etsi.org/deliver/etsi_gr/ENI/001_099/007/01.01.01_60/gr_ENI007v010101p.pdf
https://www.etsi.org/newsroom/blogs/entry/eni-13-progressing-release-2-and-etsi-itu-t-workshop-eni-machine-learning-in-communication-networks
https://www.etsi.org/newsroom/blogs/entry/eni-13-progressing-release-2-and-etsi-itu-t-workshop-eni-machine-learning-in-communication-networks
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open for the next release and work has started on each specification. The new work items for the next release 

are also open and under drafting, including:  

I. Intent Aware Network Autonomicity in ENI 008  

II. Data related mechanisms in ENI 009 

III. Evaluation of categories for AI application to Networks in ENI 010 

IV. Mapping between ENI architecture and operational systems in ENI 011 

V. Reactive In-situ Flow Information Telemetry in ENI 022. 

All the above are quite relevant to the AI engine design in 5G-CLARITY in particular the ongoing ENI 008 on 

intent aware network autonomicity, and ENI 022 on flow information telemetry.  

 3GPP 

In its Rel-15 and Rel-16, 3GPP has been specifying the framework to enable data collection and provide 

analytics to consumers. This included the definition of Network Data Analytics Function (NWDAF) services to 

support the analytics that are required for QoS Profile Provisioning, Traffic Routing, Future Background Data 

Transfer, Slice SLA, Performance Improvement and Supervision of mIoT Terminals, Support of Northbound 

Network Status Exposure and Customizing Mobility Management. Release 17 aims to improve upon the work 

initiated in Rel-15 and Rel-16 and is currently focusing on: 

 SA2 – R17 SI (SP-190557) Enablers for Network Automation: Data collection for NW automation and 

Support NW Data Analytics Functions for NW optimizations. 

 RAN – R17 SI (RP-201304) Further enhancements on data collection: Definition and signaling for 

interoperable multi-vendor input / output data. 

 SA1 – R18 SI (SP-191040) Application-based AI/ML - model transfer in 5GS: Traffic model for AI model 

transfer (eMBB) and Traffic model for Remote inference/relearning (uRLLC). 

All the above activities in 3GPP Rel-17 are quite relevant to the AI engine and telemetry work in 5G-CLARITY. 

 Open RAN Alliance (O-RAN)  

The O-RAN alliance promotes the interoperability of disaggregated RAN solutions and aims to leverage deep 

learning techniques to embed intelligence in every layer of the RAN architecture [176]. The most noticeable 

AI-relevant activities in O-RAN are the design of RICs. These include the non-RT and near-RT. The Non-RT 

control functionality is defined as > 1s and near-Real Time control functions control functions are < 1s. near-

RT and non-RT control functions are decoupled in the RIC by O-RAN architecture. 

Non-RT functions include service and policy management, RAN analytics and model-training for the near-RT 

RAN functionality. Trained models and real-time control functions produced in the non-RT RIC are distributed 

to the near-RT RIC for runtime execution. O-RAN defined A1 is the interface between the non-RT RIC and the 

near-RT RIC. With the introduction of A1, network management applications in non-RT RIC can receive and 

act on highly reliable data from the modular CU and DU in a standardized format. O-RAN aims to create next 

generation RRM with embedded intelligence, while supporting legacy RRM. The enhanced O-RAN RRM 

targets to resolve operational challenging functions, for instance, per-UE controlled load-balancing, RB 

management, interference detection and mitigation. In addition, the new intelligent RRM provides new 

functions leveraging embedded intelligence, such as QoS management, connectivity management and 

seamless handover control.  

Relevant AI interfaces are A1 and E2. A1, as described above, is the interface between non-RT RIC and the 

near-RT RIC. E2 is the control plane interface between the near-RT RIC and the multi-RAT CU protocol stack 

https://www.3gpp.org/ftp/tsg_sa/TSG_SA/TSGS_84/Docs/SP-190557.zip
https://www.3gpp.org/ftp/TSG_RAN/TSG_RAN/TSGR_88e/Docs/RP-201304.zip
https://www.3gpp.org/ftp/tsg_sa/TSG_SA/TSGS_86/Docs/SP-191040.zip
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and the underlying RAN DU. Originated from the interface between legacy RRM and RRC in traditional 

systems, the E2 delivers a standard interface between the near-RT RIC and CU/DU in the context of an O-

RAN architecture. While the E2 interface feeds data, including various RAN measurements, to the near-RT 

RIC to facilitate radio resource management, it is also the interface through which the near-RT RIC may 

initiate configuration commands directly to CU/DU. 

The near-RT RIC can be provided by traditional TEMs or 3rd-party players. While receiving an AI model from 

non-RT RIC, near-RT RIC will execute the new models (including, but not limited to traffic prediction, mobility 

track prediction and policy decisions) to change the functional behaviour of the network and applications 

the network supports.  

 Existing ML platforms 

The current landscape of AI/ML provides an unprecedented level of choice of tools and frameworks for vastly 

different use cases, from libraries that package specific ML algorithms to complex ML lifecycle pipelines. For 

a high-level overview, we refer to the Linux Foundation AI Landscape in Figure 5.1. The remainder of this 

section will highlight and briefly describe the features of selected commercial as well as open source ML 

platforms. Note that this is not an exhaustive list. We observe that much of the functionality of the discussed 

ML platforms is offered by other vendors/platforms as well and the choice of ML platform is often dictated 

by the existing software ecosystem. 
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Figure 5.1 AI landscape according to the Linux Foundation (https://landscape.lfai.foundation/).  
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 Commercial: amazon AWS SageMaker  

SageMaker [177] is Amazon’s cloud ML platform. It allows users to build, train, and deploy machine learning 

models in one cloud service. The goal of SageMaker is to decrease time to production, development effort 

and cost by supporting the entire ML workflow (and partial automation therein), including:  

 Data labelling and preparation (for highly accurate training datasets). 

 Algorithm selection (built-in high-performance algorithms, local testing and prototyping). 

 Model training, tuning and optimization (in notebooks, one-click training, managed Spot training, 

automatic model tuning, train once run anywhere, model tracking). 

 Deployment and prediction-based actioning (one-click deployment, fully managed hosting with auto 

scaling, batch prediction, inference pipelines). 

This E2E workflow also includes a managed environment for secure and fast model testing and hosting. 

SageMaker runs on Amazon’s cloud service AWS and is therefore a paid AI/ML framework. 

 Commercial: Microsoft Azure machine learning 

Similar to Amazon AWS, Microsoft Azure offers a cloud-hosted ML platform that aims to automate many 

steps in the ML workflow with Azure Machine Learning [178]. Besides ML workflow automation, Azure 

Machine Learning also offers Designer, a graphical user interface that allows to visually assemble ML 

pipelines in a fast and simple manner. This way, typical ML pipelines can be created without writing actual 

code, which makes it easier accessible for a wider range of audience.  

A typical automated ML workflow in Azure ML starts with selecting the type of ML (e.g. classification or 

regression), point to the location of the training data, then decide where to perform the training (locally or 

various remote locations such as Azure Machine Learning Compute or Azure Databricks), and finally 

configure advanced features such as hyperparameters, number of iterations and preferred model evaluation 

metric. Different ML algorithms are then trained and presented in the order of performance. 

In an MLOps approach (Machine Learning Operations, akin to DevOps), Azure also puts a strong focus on the 

lifecycle management of ML models through reproducible ML pipelines, streamlined deployment, model 

lifecycle tracking and monitoring. As SageMaker Azure Machine Learning is also a paid framework. 

 Commercial: DataRobot 

DataRobot [179] is another ML lifecycle tool that provides ease of access and partial automation of many 

steps in the ML workflow, from data exploration to model selection and deployment. Once the data is 

uploaded and the target variable for prediction is selected (and optionally a feature selection is performed), 

DataRobot uses automated ML to train and evaluate a list of popular ML algorithm implementations. These 

algorithms are then ranked by accuracy and a recommendation based on accuracy and training speed is 

made to the user who can inspect a variety of aspects about the model performance. DataRobot is available 

in the cloud, on-premise, or as a fully managed AI service with flexible deployment capabilities.  

 Commercial: Valohai 

The last commercial MLOps product in this list is Valohai, a workload processing system that offers machine 

orchestration, version control (e.g. for easy reproducibility of experiments) and pipeline management for 

machine learning [180]. It fetches the code, configuration and data sources and enables the pipelines to work 

on top of an automated infrastructure which can be controlled through a user interface. In similar fashion to 

other ML lifecycle platforms, Valohai governs statistical models through the whole process of data pre-

processing, model training and deployment, but also covers termination for when the model reached the 
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end of its lifecycle. Valohai runs on top of all the major cloud-providers as well as custom on-premises 

hardware and supports automated ML, e.g. for data management, transformation and anonymisation, 

model training and management, and interactive deployment. 

 Open Source: Acumos 

Acumos [181] is part of the Linux Foundation AI Foundation and aims to standardise the infrastructure stack 

and components required to run an out-of-the-box general AI environment. Acumos provides onboarding, 

management and deployment of ML models as Dockerized microservices. In the centre of it all is Acumos’ 

federated marketplace that allows users to publish, rate, and collaborate on ML models publicly as well as 

privately. Acumos is also developing a visual user interface to build an ML pipeline without code, called 

Design Studio. Acumos is still in development as of October 2020. The Design Studio is in beta phase and the 

Marketplace contains only a handful of models. It has not gained traction yet. 

What makes Acumos stand out, however, is that it claims to support SDN and ONAP as “many Marketplace 

solutions originated in the ONAP SDN community and are configured to be directly deployed to SDC” [182]. 

 Open Source: H2O 

H2O [183] is an open source alternative to big players such as Amazon AWS SageMaker and Microsoft Azure 

Machine Learning, providing an open source E2E ML platform that includes automated ML and easy 

deployment. One of the key differences is that H2O does not natively use Docker containers for packaging 

the ML models but instead uses a distributed Java Virtual Machine (JVM) setup. H2O also provides a paid 

version, called Driverless AI, which promises to “speed up the data science workflow by automating data 

exploration, visualizations, feature engineering, model tuning, explanations, model deployment” [184]. 

 Open Source: Clipper 

Clipper [185] is an open-source project by UC Berkeley. It provides a prediction serving system for ML models 

with focus on low latency. Clipper uses a Docker container environment for flexible deployment and can be 

used in an existing Kubernetes setup. Models can be deployed from within several ML software tools, such 

as Keras, PyTorch, TensorFlow or SciKit-Learn through the Clipper API or a REST interface. However, Clipper 

relies on third party ML tools like these as it is not an E2E ML platform. It does not cover the initial part of 

the ML workflow, such as data exploration, feature selection and model development. 

 Open Source: TensorFlow serving 

A similar role in deploying ML models is TensorFlow Serving [186]. It primarily caters for deploying 

TensorFlow models but can be extended to serve non-TensorFlow models as well. Like Clipper, TensorFlow 

Serving covers the model deployment rather than the whole ML workflow. It is therefore not an E2E ML 

platform. 

 Open Source: MLflow 

MLflow is an open source ML lifecycle management platform from Databricks. According to [187], it offers 

the following functionality: 

 MLflow Tracking, to record and query experiments: code, data, config, and results 

 MLflow Projects, to package data science code in a format to reproduce runs on any platform 

 MLflow Models, to deploy machine learning models in diverse serving environments 

 Model Registry, to store, annotate, discover, and manage models in a central repository 
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MLflow supports many third-party model types, including H2O, Keras, PyTorch, Scikit-Learn, TensorFlow and 

XGBoost, to save and load models. Models can be deployed to Microsoft Azure Machine Learning, Amazon 

AWS SageMaker and Apache Spark UDF. 

 Open Source: Kubeflow 

Kubeflow [188] is an open-source machine learning platform with the focus on deployment of ML models on 

Kubernetes. It also provides TensorFlow model training capabilities as well as pipelines for an E2E oriented 

solution to ML lifecycle management and experimentation. Although Kubeflow is centred around 

TensorFlow, it also supports various other ML libraries, such as PyTorch, Apache MXNet and XGBoost. 

Kubeflow can be deployed anywhere where Kubernetes is installed on premise but also in cloud on AWS, 

Azure, Google cloud, IBM cloud and RedHat OpenShift. 

 Open Source: Apache Spark 

Apache Spark promotes itself as a “unified analytics engine for large-scale data processing” [189] and 

provides several libraries for an ML workflow, such as SQL, dataframes, data streaming, graph analytics and 

a machine learning library (MLlib [190]) with a wide collection of ML algorithms. MLlib is a scalable machine 

learning library that can be used from within Java, Scala, Python and R, and contains algorithms such as ML 

model building and evaluation, feature transformation and ML pipeline construction. 

 Open Source: OpenFaaS 

OpenFaaS (OpenFaaS - Serverless Functions, Made Simple., n.d.) is an open source implementation of a 

Function-as-a-Service (FaaS) architecture. Serverless function serving brings together two closely related 

concepts: (1) serverless, a cloud computing execution model where the cloud provider provides the whole 

server architecture and the customer provides front-end application code to be executed (sometimes also 

referred to as Backend-as-a-Service); and (2) Function-as-a-service, where the focus is on the development 

of functions (atomic services that are smaller than microservices) while the server side is provided by the 

FaaS provider. These concepts allow scaling to zero in no-demand times and pricing (where applicable) is 

based on the actual amount of resources consumed by an application, rather than on pre-purchased units 

of capacity. 

Besides commercial options such as AWS Lambda, Google Cloud Functions and Microsoft Azure Functions, 

OpenFaas offers FaaS functionality as open source. OpenFaaS can be set up in the cloud or locally, and can 

run on top of Kubernetes or Docker Swarm. When set up locally, and given the availability of suitable 

hardware, then OpenFaaS can be used with no costs and provides full control of the deployment.  

While the concept of FaaS, and OpenFaaS in particular, was developed for generic function serving rather 

than specifically for ML model serving, it is well suited for ML model deployment as well. Here, OpenFaaS 

allows to easily deploy ML model code from any language, even pre-existing legacy code can be brought into 

OpenFaaS function format. Some languages are supported directly by OpenFaaS (e.g. Python, Node.js, Java, 

Go), but theoretically ML models of any language can be deployed because the ML models are wrapped into 

Docker containers. The use of Docker containers not only allows for language independent ML model 

deployment but also for flexible deployment and scaling as required by service-oriented architectures such 

as 5G-CLARITY. 

 Summary and preliminary evaluation 

From the plethora of available ML platforms some are commercial while others are open source, some are 

trying to cover the whole E2E ML workflows including data exploration, while others focus more on the 

deployment of trained ML models. Some come with their own set of already implemented ML algorithms 
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that have to be used by the ML designer. 

The 5G-CLARITY requirements defined in Section 5.1 rule out some of the described ML platforms for use in 

5G-CLARITY because they are not open source, such as Amazon AWS SageMaker [177], Microsoft Azure 

Machine Learning [178], DataRobot [179] and Valohai [180]. Acumos [181] looks like a good candidate with 

its supposed synergy with ONAP but so far only its Marketplace appears to be released for use. H2O [183] is 

a strong candidate for an open source E2E ML platform, however, H2O is built on a Java Virtual Machine 

approach rather than Docker containers, which is in conflict with the envisioned containerised approach for 

the AI engine, including deployment of ML algorithms into the Docker-based RT RIC. TensorFlow serving [186] 

is centred around deployment of TensorFlow models. While it also aims to support other types, the obvious 

focus on the TensorFlow environment could be a limiting factor. 

Other potential candidates for the 5G-CLARITY AI engine are MLflow [187], Clipper [185], Kubeflow [188], 

Spark [189] and OpenFaaS (OpenFaaS - Serverless Functions, Made Simple., n.d.). All are open source, but 

they vary in the features they offer. Among these, Clipper appears to be the least mature and Kubeflow 

requires Kubernetes, which may be conflicting with the requirement on low installation overhead. MLflow is 

focussed on Databricks and Python, and Spark does not natively use Docker containerisation. An initial 

investigation of the discussed software frameworks revealed that OpenFaaS may be considered as a basis 

framework for the AI engine as it supports all 5G-CLARITY requirements: 

1. Open source (out of the box). 

2. Minimal overhead for installation and long-term maintenance (out of the box). 

3. Packaging of ML models as a format that enables seamless deployment into near real-time RIC 

component operating in the RAN cluster, which supports containerised xApps (out of the box or with 

minor modification). 

4. Enable experimentation with cutting edge and custom ML algorithms beyond state-of-the-art 

algorithms (out of the box). 

5. Allow for training of ML models to be inside or outside the private venue, e.g. in a public cloud with 

enough training resources (out of the box). 

6. Enable the lifecycle management of ML models, including instantiation, removal, update of ML 

models (out of the box or with minor modification). 

7. Provide a registry for ML models for ML service discovery (out of the box). 

The final requirement will be fulfilled by integrating the Intent engine (Section 6) with the AI engine: 

8. Enable access to ML functions to non-expert private network operators (after integration with intent 

engine) 

5.3 5G-CLARITY initial design 

The primary role of the AI engine is to act as a host for the ML models to be deployed, where some candidate 

models are described in Section 4. This includes offering ML algorithms as services to the network operator, 

keeping track of what ML services are available, and providing a way to manage their lifecycle. Figure 5.2 

shows the AI engine in the context of the 5G-CLARITY environment, with connections to the network 

operator through a dashboard, to an ML designer through a model lifecycle interface, and to other 5G-

CLARITY components, such as Slice Manager and Telemetry Collector that are part of the 5G-CLARITY 

management stratum and are described in detail in Section 2.  
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Figure 5.2 Architectural overview of the 5G-CLARITY AI engine.  

A typical workflow of interactions with the AI engine consists of the following steps (visualised in Figure 5.3): 

1. An ML designer trains an ML model (on or off premise). 

2. The ML designer deploys the trained model in the AI engine, where the model becomes an ML 
service. The ML Lifecycle Manager supports the onboarding of the service and adds the ML service 
to the ML Service Registry. 

3. Consumers of ML services, such as the network operator or other 5G-CLARITY network functions 
or application functions, can execute any ML service that is available in the ML Service Registry. 

4. ML services that are executed by a consumer may retrieve input data from the 5G-CLARITY 
Telemetry Collector and may forward configuration suggestions to 5G-CLARITY network functions 
or application functions. 

5. The ML designer may monitor the performance of the deployed ML services through the ML Lifecycle 
Manager and update or delete existing services upon demand. 

A list of services that the AI engine offers in connection to the management and execution of ML services 

was introduced in 5G-CLARITY D2.2 [2] and is described in Table 5-1. 
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Figure 5.3 Sequence diagram of a typical workflow for management and execution of an ML service that is hosted 

by the AI engine. 

Table 5-1 AI Engine Services. 

MF Service ID MF Service Name Description 

AIEngine_Ml_Mod

_Mgmt 

ML Model 

Management 

service 

This service allows the deployment, update and removal of trained ML 

models by the ML designer. The ML model shall be provided in 

containerised form. It will consume input data from the Data 

Management and send output to various network functions (e.g. Slice 

Manager). 

Deployed ML models can be updated after they have been retrained, e.g. 

when additional data has become available. 

At the end of their life span, deployed ML models can be removed from 

the AI engine. 

AIEngine_Ml_Mod

_Register 

ML Model Registry 

service 

The deployed ML model can be registered in the ML Service Registry. In 

the case of pre-trained models, this service will allow the intent engine 

to discover ML services and connect them to a given intent. 

AIEngine_Ml_Mod

_List 

ML Model List 

service 

Lists the ML models that are currently deployed and ready for execution. 

AIEngine_Ml_Mod

_Run 

ML Model 

Execution service 

Runs a deployed ML model that is available in the ML Service Registry. 

Once executed, the deployed ML model may run as a once-off or 

recurrently. 

AIEngine_Push_XA

pp 

xApp Pushing 

service 

Certain (real-time ready) ML models can be pushed down into the near-

RT-RIC as xApps. 

 

 Containerised ML models 

The basis for the offered ML functionality in 5G-CLARITY is containerisation of ML models using Docker 

containers. At a glance, the Docker containerisation environment enables developers and ML designers to 

wrap their code into isolated containers, which run inside a virtualised Docker environment on top of a host 

operating system as shown in Figure 5.4. 
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Figure 5.4 Conceptual layers of a docker environment, where multiple ML models run as containerised services3. 

 

Figure 5.5 ML service packaged inside a Docker container, with the ML model (blue), data exchange (orange) and 

storage (yellow) components. 

In the context of the 5G-CLARITY AI engine, each of the containerised applications from Figure 5.4 represents 

a packaged ML service. As shown in Figure 5.5, a 5G-CLARITY ML service docker container comprises the ML 

model and some utility components, mainly for communication and configuration. 

 ML model 

The ML model is the core of the container. From the perspective of 5G-CLARITY, an ML model is essentially 

a function that takes a specific input and returns a prediction or recommendation output. In a typical ML use 

case in 5G-CLARITY, an ML model is a pre-trained model or a model that performs a continuous training 

inside the container. From an implementation point of view, the ML model can be an executable binary file 

or a piece of software code together with a compiler. The specific ML models that are planned to be deployed 

in 5G-CLARITY are described in Section 4 and include:  

 Predicting SLA violations/success rate (Section 4.2) 

 RT-RIC: AT3S traffic routing/handover (Section 4.3) 

 RAN slicing in multi-tenant networks (Section 4.4) 

 User association (Section 4.5) 

 Data and Computation Offloading (Section 4.6) 

 Indoor Ranging with nLoS Awareness (Section 4.7) 

 Resource provisioning in a multi-technology RAN (Section 4.8) 

                                                           

3 https://www.docker.com/resources/what-container 

https://www.docker.com/resources/what-container
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 Dynamic transport network setup and computing resources provisioning (Section 4.9) 

 Adaptive AI-based defect detection in a smart factory (Section 4.10) 

 Container API 

It is also essential that each container provides an API through which the ML model can be interacted with, 

as shown in Figure 5.6. The input to the model and the model’s output will be transmitted through this API, 

and all models deployed in the 5G-CLARITY AI engine shall adhere to a common API specification. In this way, 

all ML models will communicate using the same protocol. For example: i) the model receives input data in 

JSON format; ii) it provides a “predict()” function that processes the input and returns a value or series of 

values as the prediction result; which iii) is returned in JSON format. 

 

Figure 5.6 The Container API is the point of communication through which the ML model can be queried to produce 

predictions given the input data that is encapsulated in the prediction request. 

The container API is typically implemented using REST (Representational State Transfer) or RPC (Remote 

Procedure Call). REST is a well-known protocol with well-defined semantics that is popular for web APIs, 

whereas RPC is typically used for server-to-server communication. Furthermore, the base abstraction of REST 

is resources. It is based on simple formats and transports (JSON/XML/HTTP), thus it is easy for system 

integration. However, JSON/HTTP is less efficient than other binary alternatives, such as RPC. RPC abstracts 

as function calls instead of resource objects. It is based on more complex formats (gRPC, Protobuffers, HTTP, 

Binary) and therefore requires significantly more effort to architect and integrate compared to REST. 

However, once RPC is implemented, it provides much better performance than REST due to optimised binary 

formats and transports. Both protocols are suitable for containerised applications and are used by existing 

ML deployment frameworks. 

 Remote data retrieval 

Some ML models may require additional data to respond to a prediction request, for example the ML model 

may need additional context from the network or access to current or past telemetry. Therefore, the ML 

service container may contain a function to establish a connection to the 5G-CLARITY Telemetry subsystem, 

described in Section 2.4.2, to retrieve additional data as depicted in Figure 5.7. As described in Section 6 

another possibility to facilitate the connection of the AI engine to the multiple data sources in the system is 

to have the use the Intent Engine as mediator. 
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Figure 5.7 Some ML models may request additional network data from the 5G-CLARITY Telemetry and Event 

Collector. 

 Local data storage and model configuration storage 

The containerised ML service may also include local data that help with a given prediction or network 

optimization task, such as frequently used telemetry data that is locally cached inside the container or model-

specific data that was provided along with the ML model. A model may also store its hyperparameters or 

other configurations inside the container. This local storage of data and configuration is optional and may 

not be used by all ML models deployed in 5G-CLARITY. 

 ML service registry 

The ML Service Registry maintains a catalogue of the available ML services, which are offered to the users of 

the AI engine. This catalogue shall be updated each time a new ML service is deployed or removed. ML 

models that are hosted by the AI engine but that are not ready for prediction queries shall not be listed as 

“available” in the ML Service Registry. This includes offline models that are currently training (such as 

Random Forest models) and online models in the early training phase that have not yet converged to a state 

of reliable predictions (such as reinforcement learning models). Models that have reached stable prediction 

state shall be added to the ML Service Registry. 

 ML model lifecycle management 

An essential part of using ML models as services in the AI engine is ML model lifecycle management. This 

includes the onboarding, monitoring, updating and removal of ML models as depicted in Figure 5.8. These 

actions are typically taken by the ML model designer directly, who has the best understanding of the model 

and its performance. 
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Figure 5.8 Typical workflow of ML model lifecycle management from the perspective of the ML model designer who 

is deploying a pre-trained ML model. 

 ML model onboarding as a service 

The first step in the ML model lifecycle is the onboarding of the model into the AI engine, where it can either 

be deployed as a pre-trained model that is ready to return predictions, or be trained inside the 5G-CLARITY 

environment from within the AI engine, using live 5G-CLARITY telemetry data. An ML model that is deployed 

and available to deliver predictions (whether pre-trained or in online training mode) is defined as an ML 

service, which shall be added to the ML Service Registry where it can be discovered by users of the AI engine. 

ML models that are currently training and are not yet ready for making predictions shall be added to the ML 

Service Registry once they become available as fully trained ML services. 

Since ML services are deployed in the AI engine as Docker containers, the ML model designer shall align the 

design of the model containers with forthcoming 5G-CLARITY guidelines to ensure compatibility with the AI 

engine. This includes, for example, an API for communication with the ML model and a method to retrieve 

5G-CLARITY telemetry data if that is required by the model (see Section 5.3.1). 

 ML service monitoring 

The AI engine shall provide methods to monitor the performance and general health of deployed ML models. 

The model performance relates to the prediction error, which can be obtained, for example, by comparing 

the values that were predicted in the past with the actual current values of a given variable or by monitoring 

the distribution of input data and prediction output over time to detect data drift. Other monitored metrics 

may include health-related information such as CPU and memory consumption. The monitored metrics may 

be visualised to the ML model designer through a dashboard such as Grafana as exemplified in Figure 5.9. 
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Figure 5.9 Example of visualisation of ML model performance [191]. 

 ML service update 

Another step in the lifecycle of a deployed ML service is the update of the underlying ML model. From time 

to time the model may need to be updated because of model decay, where the model loses accuracy over 

time due to a change in the data distribution (data drift) or change in the meaning of the data (concept drift). 

The ML model designer can detect a decaying model using the monitoring through visual inspection or by 

comparing the model performance to a pre-defined threshold. When a decaying model has been detected, 

it needs to be retrained and/or a new version of the model must be deployed. 

The retraining of the ML model may take place within the AI engine or outside, depending on the capabilities 

of the deployed ML service container. Regardless of the process of re-training, a new version of the ML model 

replaces the old one in the AI engine, and the ML Service Registry must be updated accordingly. 

 ML service removal 

The final step in the ML lifecycle workflow is the removal of ML services. An ML service may be temporarily 

removed as an alternative to updating, followed by a re-deployment at a later stage. In other cases, the ML 

service may be deemed deprecated because its functionality is no longer needed. Then, the ML service is 

permanently removed from the AI engine. In either case, the ML Service Registry must be kept updated with 

the status of the ML service in question. 

 Interfaces to and from the AI engine 

As described in 5G-CLARITY D2.2 [2] the AI engine is located within the Intelligence Stratum of the 5G-

CLARITY system, and therefore has interfaces through which it can communicate with other 5G-CLARITY 

elements. An overview of these interfaces is shown in Figure 5.2. 

 Network telemetry 

Some ML Services require live network telemetry data, which they can retrieve through an interface that 

shall be provided by the network telemetry provider. Section 2.4.2 identifies the potential telemetry sources 
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within the 5G-CLARITY system that ML Services may be interested on. As part of our initial design, we 

consider that the access of the ML Services to the various telemetry sources is going to be mediated through 

the Intent Engine. Example use cases are provided in Section 6.  

 Cloud data storage and processing 

Additional resources for storing and processing large amounts of data for ML model training can be 

outsourced to a (hybrid-)cloud solution in order to extend computation power beyond local resources if 

needed or to train on data that is stored in the cloud. Models that have been trained in a cloud environment 

should be onboarded into the 5G-CLARITY AI engine after the outsourced training has concluded through 

the ML lifecycle management onboarding process. 

 Intent engine (Intent interface) 

The 5G-CLARITY Intent engine provides an Intent-oriented interface towards users of the AI engine. Some of 

the AI engine’s functionality shall be accessible through the Intent interface to facilitate ease of access. For 

example, the Intent engine shall be the primary way to execute available ML services such that a non-expert 

network operator can run ML functionality through a simplified interface. 

Other functions of the AI engine may also be accessible through the Intent interface, such as onboarding and 

removal of ML services. The Intent engine may also be the central point of access for the ML models to 

request telemetry data from the network and forward recommended configurations to the network. It will 

be investigated how much of the traffic to and from the AI engine can be routed through the Intent engine 

in practical scenarios, as invoking the Intent engine adds overhead to these requests. 

More details and some use cases of access to 5G-CLARITY network functions through the Intent engine are 

discussed in Section 6.  
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 Intent Based Networking 

6.1 State of the art 

The term and concept of Intent, namely the ONF Northbound Interface (NBI) group, was introduced to a 

wider audience during an Intent Summit in 2014. Subsequently, the ONF standardised an intent approach as 

their NBI (document TR-523, October 2016 [192]). The goal of such an intent-based interface was to further 

liberate (SDN) applications from details of the underlying network(s). Two SDx Central articles provide the 

state of discussion at the time: Marc Cohn summarises the summit [193] while David Lenrow details the 

intent model [194]. 

 ONF northbound interface 

Lenrow’s article is important because it sets the scene for most of the intent-based networking artefacts we 

find today. He summarises an intent as “tell me what you want” and “don’t tell me what to do”, which is 

accompanied by a process in which an (intelligent) application “translates the intent into an infrastructure-

specific prescription that causes the network to behave in the desired manner”. Five main advantages (or 

characteristics) are identified as an Intent being (1) invariant, (2) portable, (3) composable, (4) scaling out 

(not up), and (5) providing context. The first four characteristics are easy to understand and important. The 

fifths characteristic though implies that the reason for the intent is known and thus we have a possibility to 

determine apparent conflicts and can find ways to mitigate them. 

The before mentioned ONF standard TR-523 defines an intent as a declarative paradigm (or method) for 

interactions between service consumers and service providers via an intent-based NBI that takes “what” (the 

intent) from the consumer and forwards notifications from the provider. The Intent NBI properties are then 

a formalisation of the original intent characteristics as: 

 Non-prescriptive: specify service request (what) and leave delivery and resource use to the provider 

(how). 

 Provider-independent: same request (intent) can be presented to any provider, while terms from 

the intent are translated into the provider’s world (using so called mapping lookups). 

 Declarative: consumer declares, without request of further details. 

A system realising the Intent NBI then makes use of continuous loop(s) comparing existing and new Intents, 

mappings, and controlled resources (or resource sets), and evolving states. The mappings used for the 

translation are realised using key-value stores. A “key” represents a consumer term and its value represents 

a provider term. When used accordingly, it allows to translate simple consumer terms to (more) complex 

and detailed provider terms. 

A fully intent-based system (with consumer, NBI system, and provider) can then be used to manage the life 

cycle of networking infrastructure and/or desired network states. Four key characteristics are defined for 

such a system: (1) translation and validation process; (2) automated implementation using automation or 

orchestration; (3) awareness of network state; and (4) assurance (including dynamic optimisation and 

remediation) [195]. 

The ONF intent model has resulted in some open source projects. To give three examples, OpenStack 

Neutron used group-based policies as contracts between groups of end points [196], OpenDayLight 

developed network intent composition for connectivity intents (see for instance [197]), and ONOS built an 

intent framework [198]. 
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 IETF NMRG 

The IETF NMRG has adopted the intent model as Intent-based Networking (IBN). This work has seen active 

development of draft standards for general concepts, learning and reasoning, classification, intent-driven 

network management, and intent-policies in autonomic networks (see for instance [199]). A number of these 

draft documents have expired in 2019. However, the concept of IBN is still a working item and a further drive 

in the IETF can be expected. 

In the NMRG, an intent is defined as “A set of operational goals that a network should meet and outcomes 

that a network is supposed to deliver, defined in a declarative manner without specifying how to achieve or 

implement them.”[200]. IBN then is a network that can be managed using intents. It also introduces a Single 

Source of Truth (SSoT), a functional block in an intent system that normalises intents and services as a single 

source of data (for lower layers). Using this definition, the IETF moves away from defining an intent as a type 

of policy. It also removes the dependency of intent on autonomic networks. An intent now provides a data 

abstraction as well as a functional abstraction. 

An intent-based system is characterised by six properties: (1) single source of truth, (2) one touch but not 

one shot, (3) autonomy and supervision, (4) learning (not imperative such as ECA policies), and capability 

exposure (for intent composition), and (6) abstraction. While the general process of an intent is still very 

close to the ONF origin, learning and supervision are important new concepts here. Furthermore, we can 

find intent categories as terms for further discussions: operational, rule, service, and flow. 

 ETSI and 3GPP 

ETSI and 3GPP have seen an increasing interest in intent-based approaches, for instance in the zero touch 

and network intelligence initiatives (ETSI ZSM, ENI) and SA5 architecture (3GPP). These work items seem to 

be closely related to network automation and autonomous networks (which are important if not necessary 

to realise intents as the ONF has stated). Furthermore, the TM Forum ZOOM project has started a work 

stream on intent-based resource management aligned with ETSI MANO (see for instance [201]). 

In 3GPP, TR28.812 defines an intent as “A desire to reach a certain state/position for a specific entity for 

instance for a service assurance or network deployment task” [202]. Notably, the intent does not define the 

necessary steps to get to the wanted state. An intent-driven management service then is a “a management 

service that allows its consumer to express an Intent”. The service connects consumers and producers. A 

consumer states an intent and a producer realises it by performing network management tasks or 

formulating and activating network management policies. Here we find a clear distinction between intent 

and policy in the area of network management. The document then develops a layered model for intent-

based interactions, intent expressions, and shows the dimensions of an intent-based framework. 17 

scenarios for intent-based radio systems are presented. 

 Research 

Calegatti et. al [203] provides an overview of research publications categorised as single or multi-domain 

solutions. The term domain is used here to describe technologically different parts of a network, for instance 

radio access, wireless access, backhaul, core, cloud, or SDN. In all single domain papers, an intent is a 

representation of a policy or a set of policies, which are activated or triggered once the intent is activated 

(or deployed, most papers do not use life cycle stages for intents). In these papers, we do not find examples 

of formal intent expressions. 

Davoli et. al [204] describes a full intent framework, including intent expressions, for three different domains: 

IoT, data center, and transport network. Each domain is evaluated for feasibility, demonstrating that intent-

based networking can be a valid even under near-real-time constraints. Esposit et. al [205] uses behaviour-
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driven techniques to allow for intent expressions that are close to natural language (in this paper English 

using Gherkin). This approach is evaluated in three different scenarios. Arezoumand et. al [206] uses graphs 

to express connectivity between networked components, which are then used as intents. This approach 

requires only two network policies: forward and block. The mapping function is then the only variant part of 

the intent system. 

 Future work items 

Calegatti et. al [203] also discuss the open issues for multi-domain intent-based systems. Even with 

standardisation organisations driving the topic, we still do not find much of language specifications or 

formalisms; at least not outside single-domain or proprietary use cases. The main question here is what 

semantics does an intent cover and how they can or should be expressed, then how they can be efficiently 

encoded in some form of language. 

Subsequently, the two main functions for intent processing using such formal expressions are also far from 

being well understood: translation and validation. The translation of an intent depends on the expressiveness 

of the intent language, the involved semantic concepts, and the available processing power. Requirements 

are often driven by the application scenario, e.g. real-time translation inside an OSS, near-RT translation for 

an analysis inside a BSS. The validation of intents turns out to be as difficult as the validation of policies. 

Intents (despite the original claim) have not shown to ease the automate conflict identification and 

resolution; data consistency is still as problematic in intents as anywhere else. 

6.2 Intent domain model 

To understand the potentials and power of intent, beyond the discussed state of the art, we need to first 

investigate its applicability within system and application design. A fundamental principle here is the 

separation of mechanism and policy. This separation leads organically to where intents can be placed, what 

role in a system they can play, and major properties an intent has. The result is an Intent Domain Model 

(IDM), which describes all aspects of intent within its own field, before we will apply it to build an intent 

engine and describe how 5G-CLARITY will use intents. 

 System, mechanism, policy, intent 

The separation of mechanism and policy is a fundamental design principle for systems. Here, a system is 

anything built for or with a purpose, e.g. an application, a product, a service, a platform, or a solution. Each 

system then has invariant parts – its mechanisms – and variant parts – its policies. Mechanisms of a system 

do not change or hardly ever change (over the lifetime of the system) thus they are invariant. To adapt 

mechanisms to required behaviour, they provide some means of governance, i.e. some interface which can 

be used to change their behaviour. 

This interface is not exposed outside the system. Instead, the system then has one or more policies. These 

policies are variant, which means they are the variant part of the system (thus its mechanisms). Variant here 

means relatively dynamic, can change frequently over the lifetime of the system and much faster than any 

mechanism. To apply policy control to a system, the policies must use the offered means of governance of 

each mechanism. What a policy is depends then on (a) the concrete system and its mechanisms; (b) how 

those mechanisms chose to be governed (if they cannot be governed, then there are no policies!); and (c) 

how those mechanisms can be governed (if they cannot be governed then policies might exist but policy 

control is impossible). 

Both, mechanisms and policies, can be relative. In a multi-layer or larger system for instance, lower layer (or 

level) policies can be higher layer (or level) mechanisms. This allows for hierarchical, recursive, layered, or 

fractal system design and composition. 
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When designing a system, one should always aim to maximise invariants (mechanisms) and minimise variants 

(policies). In software design this should lead to larger reusability, either of code through libraries or 

inheritance or as a runtime property because a small amount of assets provide principle services (invariant) 

rather than a huge amount of assets providing specialised (invariant) services. Once all mechanisms have 

been identified, the remaining variants are very likely policies. As a further note: in system architectures and 

models, invariance is the targeted abstraction, while variance is the option of multiple different 

implementations of such an architecture. 

To give an example, take the heating system in a family house. All pipes, the tank (gas, oil, or kerosene), the 

heating device, radiators, and a water boiler are all mechanisms of the system. The policies are then the 

ability to switch the system on/off, to change the valve on the radiators (thus changing the amount of heat 

generated when switched on). Some of these policies can also be controlled via any electro-mechanic or 

electronic control unit automating on/off periods. The way these policies are offered to a user are then the 

actual valves on the radiators, the on/off switch, and the interface of the control unit. Their functionality is 

determined by the available policies, while their design and look & feel can be realised in any way, shape, or 

form desired, from simple switches, up to wireless control or even remote control with a smartphone 

application. 

These interfaces to a system’s policies is where intents are being used. While traditional interfaces might be 

based on exposing some process functions (e.g. flexible programming of on/off timers in our heating system), 

intents can be used to abstract the policy interface focusing on what a user (or another system) can achieve 

(govern) without the need to detail workflows or processes or actual programs. In other words, an intent is 

an abstraction of a policy interface, to access (and change) a policy, which in turn govern a system’s 

behaviour. 

Applying this view of intents to an Operation Support System leads to deeper understanding. Figure 6.1 

shows nine different scenarios for managing a RAN, or parts of it, using intents. The examples start with an 

eNB (example a and b) and become more and more complex until an intent is used to manage a compete 

OSS cluster (example i). 

In a first iteration of abstracting policy interfaces to intents, we may identify three different types of intents: 

managing single elements (a, b), managing OSS instances or cluster (c, i), or managing SON functions and 

SON coordinators (d through h).  

These abstractions are based on the purpose the intents are created for, which ultimately determines the 

scope in which those intents may operate. Simple management of elements will focus on element functions, 

including initialisation, configuration updates, and profiles. SON functions and their coordination extends the 

scope towards finetuning the self-organisation of cells or tracking areas or other cell groupings. Finally, the 

management of an OSS or an OSS cluster will include all realised OSS functionality, e.g. assurance. 

The scope of the intent could also be defined in different terms, covering all shown scenarios. For instance, 

the intent might be defined to manage one or more UEs (this is what O-RAN facilitates with its A1 interface 

for the none-real-time RAN intelligent controller, see for instance [207]). In this case, the scope of the intent 

is not directly related to the system, thus we will be able to use the same intent (i.e. only one intent type) on 

eNBs, SON functions, and OSS instances. 

In other words, when we change the abstraction and scope of an intent from system towards function (or 

functionality), then an intent becomes inherently reusable across a wide range of very different systems. We 

can reuse existing policy interfaces and design a (compared to the systems, mechanisms, and policies) rather 

simple façade towards intents that abstract them into functionality. 

Looking further into the façade, another important aspect becomes visible. An intent does not only abstract 

a policy interface but can also harmonise otherwise disjunct models and vocabularies. Figure 6.2 shows how 
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the façade works. An intent is declared somewhere, say in domain A using vocabulary V, then translated into 

policies or actions somewhere else, say in domain B using vocabulary W. The intent and the translation 

process harmonise two domains A and B (potentially including domain models) and different vocabularies V 

and W (with syntactic and/or semantic translation between them). The process is then reversed when 

policies and actions from domain B report on the intent fulfilment back to domain A. The figure shows a few 

example domains: network and element management (ENM, the Ericsson Network Manager product), 

databases, security, RAN, or local networks. 

What an intent can express as well as how this can be translated depends on the policy interfaces of the 

systems. Figure 6.3 shows a closed control loop with analytics, decision making (policy), and orchestration. 

This control loop is a generalisation of ONAP and other loops used in the telecommunication industry.  

Taking ONAP as the example, policies here are defined in XACML, Drools, or programmatic using the APEX 

policy engine [208]. The interfaces to these policies are standardised in the ONAP Policy Framework (PF) 

using TOSCA templates. The policies are then deployed as part of a service, represented in the figure as a 

closed control loop. Looking at the TOSCA templates allows to understand the scope of potential intents. 

Taking a defined (and then also deployed) service, allows to understand the potential intent instances for 

this particular service. This means we can build intent infrastructure, its core being the façade introduced 

above, for ONAP services in general, and then intent instances for any ONAP service in particular. 

 

Figure 6.1: OSS intent examples: manage radio features with 3 intents.  

 

Figure 6.2: Intent, actions, and process. 
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Figure 6.3: Intent and policies on a control loop system.  

Careful design of the intent specification and the intent infrastructure will lead to virtually universal 

applicability, without rebuilding software or runtime assets. Careful selection of intent scope (as discussed 

above) with focus on functions (or functionality) rather than networks or elements, will lead to virtually 

universal intents that can be used over a wide range of networks and services. These statements might not 

(will not) hold if intent is used randomly in a system.  

 The essence of intent 

Intent is often reduced to be the what rather than the how, mainly to state that an intent is declarative and 

not imperative. However, this reduction becomes problematic very fast, thus is not sufficient to define an 

intent. Take some network related intent examples: 

 AI wants to improve quality using orchestration 

 OSS wants to upgrade network to MBB 

 Control loop wants to create 5G NFV chain 

 Control loop wants to optimise application coverage- 

 NOC wants to run AI exploration on specific network performance data 

All examples focus on what is wanted. However, in reality these intents will carry more information, e.g. 

when is it wanted, how is it wanted (in what form, with what extended properties), when (or for how long) 

is it wanted, maybe even why it is wanted. We can look at systems using intents to see how many 

what/when/where/why/who/how properties do exist (SQL queries, every CLI interface, CM systems, markup 

languages, navigation systems, virtual assistants). 

The actual important element of an intent definition are not the question words but the verbs being used. 

An intent defines “who wants what, potentially also when, where, why, and how as in what form”. This is 

then translated into policies and actions determining “who does what, when, where, why, and how” to 

realise an intent. As discussed above, this translation might cross domain boundaries. This definition of what 

does an intent express, is shown in Figure 6.4.  

The figure also shows the communication between intents and actions (or policies). The process is refined 

to reflect where intents are being used. In network management, an intent might describe a required 

configuration. Intent fulfilment then depends on this configuration being maintained until the intent 

terminates (or is terminated). A continuous loop is required for intent assurance. This loop takes the intent, 

translates it into actions (at the time the loop executes), monitors the system, validates system behaviour, 
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translation, which will incorporate the current situation and might result in very different actions being 

selected. Since the translation is not part of the intent assurance, we use mapping (to map) to describe the 

translation of an intent towards a policy interface including domain boundaries. 

 

Figure 6.4: Intent in a nutshell. 

To explore intent properties, we introduce four intents described in iconographical form (see Figure 6.5). The 

first intent states “get a taxi to a location”. Location might be further specified as “home”. The second 

example states “get a taxi to a sport event, at a specific date and time, using the lowest possible cost”. The 

third example states “get a taxi to a sports event, be environmentally friendly, at a specified time, using a 

specified payment method”. The fourth and final example states “get a taxi to a location, with a route to 

meet or collect a person, as a recurring event”. The term “taxi” might be generalised to “transport” or “lift”, 

which then would include not just regular taxi services but also chauffeurs, specialised transport services, or 

any person legally permitted to realise the transport.  

 

Figure 6.5: Iconographic intent examples to get a taxi (or transport). 
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 Primary objective and secondary objectives 

Intents have one (1!) primary objective and may have 0 or more secondary objectives. 

The primary objective of the four examples is “get taxi” or more generalised “get transport”. The primary 

objective can then be expressed as an action sentence, in English in the form of subject, verb (action), and 

object. “Who wants what” becomes now “Jill wants a taxi” or “Joe wants a chauffeur”. This primary objective 

is none-negotiable, whatever is described here is the basic requirement. The better the scope for the primary 

objective is set, the more reusable an intent becomes. For instance, “get taxi” excludes chauffeurs, while 

“get transport” includes any (legal, insured) transport service. 

Secondary objectives may be used to further specify the intent in terms of what is exactly wanted, how is it 

wanted (in what form), when is it wanted, why is it wanted. Allowing a further specification on what is 

wanted makes the intent “get transport” useable in specific scenarios as “get transport, a taxi”. 

Providers might require secondary objectives, even in defined syntax and semantics. Taxi companies for 

instance often require stating the destination. “go home” might be enough (if translated to the person’s 

home address). “N37 PV44” might be acceptable if everyone understand that this is an Irish zip code that 

points to an exact location (house). 

The taxi examples also show a few more secondary objectives: at a future date (for the scheduled sports 

event), with cost constraints (lowest possible price), set taxi type (electric car), set payment method (via 

phone), with time constraints (at specified time, as a recurrent event), and with way point on the route (to 

meet or collect someone). These secondary objectives might be negotiable and may be combined using logic 

(I want “this and that” or “this or that”). 

 Temporal aspects 

Intents exist once issued (or deployed) until fulfilled or terminated. 

Intents can require instantaneous or scheduled delivery, as one-off or recurrent event. 

An intent that is not issued or deployed cannot be considered by a system, it might simply be a template or 

potential intent kept in a repository for future use. Once issued, an intent exists in a system. The end of an 

intent is reached either when it is fulfilled (varying options to determine this state) or actively terminated 

(ideally by the issuer). The fulfilment of an intent depends on its requirements on delivery. 

An intent can require instantaneous or scheduled delivery. Instantaneous means “now”. In our taxi examples 

at the time someone contacts a taxi company. Scheduled means at some time in the future, e.g. when 

booking a taxi for a particular time. These two types of delivery have implications on the intent provider, 

including risks (e.g. scheduled intents might be revoked, cancelled, voiding any effort already taken). When 

no time constraint is set in the intent, an instantaneous delivery should be assumed. 

Furthermore, intents might be a one-off (realise, deliver, finish) or recurrent (delivery at specific times or 

continuously). Recurrent intents might have an end date (final fulfilment can be determined). If no end date 

is given, a continuous delivery until termination should be assumed.  

Temporal aspects of intents require an understanding of time (and date). Figure 6.6 shows important 

concepts. The top shows common time properties, encoding formats, units, windows, date/time 

combinations. These are important in human-machine communication scenarios, and the human 

understanding of time expressed in an intent needs to be translated into a system view. This translation (and 

required calculations) is shown in the middle row of the figure. The concepts are instant, point, window, and 

period, while calculations can be done using the Allen’s interval algebra [209]. Each specification of time 

needs to be bound by a time axis and scale, which determines what an instant (or point) is and how small 

windows can be. Furthermore, time information needs to be provided in context (e.g. time of cause, effect, 
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monitor, normalisation, process, etc). A common, formal, ideally standardised understanding of temporal 

aspects and time is essential for any intent process. 

 

Figure 6.6: Time and temporal aspects (general). 

 Intent scenarios 

Many intents, many providers, many domains, recursive. 

There are four essential scenarios for intents, as shown in Figure 6.7. First, a provider can support many 

intents. While most systems will be designed for a single, specific purpose (and thus provide only intents for 

this purpose), some systems might aggregate a larger number of functions. An OSS for instance will support 

most of the FCAPS, thus provide intents for fault, configuration, accounting, performance, and security 

management. 

Next, a carefully designed intent (primary objective) can be supported by many providers. The example 

intent “get taxi” can be provided by any taxi company. The more general intent “get transport” can be 

supported by any transport organisation or individual. Important is that the design of the intent will 

determine which type of provider can support it. 

 

Figure 6.7: Intent Scenarios. 
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Mapping might be required to cross domain boundaries. Finally, intents can be used between many layers, 

in a recursive way (i.e. the number of layers is not determined a priori). In this scenario, the selected actions 

from one intent process are intents used as input for another intent process. This can be done recursively, 

until one or more actions are selected that are not intents anymore. 

 Declarative by design 

An intent is declarative by design, i.e. not by definition. 

This is a consequence of an intent being the abstraction of a policy interface, the separation of mechanism 

and policy in a system, and the maximisation of invariance in system design. The later results in an invariant 

system process (or control flow), which can be governed by policies. For instance, a protocol handler will 

create a PDU including a checksum. This is its mechanism, including the required control flow. The way the 

checksum is calculated can be a policy, e.g. using SHA-1 or MD5 or CRC algorithms. An intent is an abstraction 

of the policy interface. It can never interfere with the mechanism or control flow. Thus, it is by design 

declarative. 

A declarative intent may contain logic in its specification. Relationships between the secondary objectives 

can be expressed using Boolean logic or even algorithms. The intent itself is still declarative. This is similar to 

declarative programming. 

 Processing intents 

Intents can be processed in three phases, invariant. 

Processing intents can be realised as a mechanism, an invariant process, with three phases. Figure 6.8 shows 

the phases with tasks (left) and what the tasks are doing (right). Phase 1, called initial, gathers an intent and 

maps it to an interpretable expression, potentially crossing domain boundaries. Some interface is required 

to gather the intent. This interface can be graphical, command-line oriented, an API, or any other interface 

that is intelligible for the intent requestor (a person or machine). Once the intent is gathered at the interface, 

it can be mapped from the requestor’s domain into a domain with intent providers and translated from the 

interface into primary and secondary objectives.  

The second phase is the continuous process of translate, monitor, validate, and report. For as long as the 

intent is deployed (see temporal aspects above), it is translated into actions. In the simplest form this is a 

direct selection of actions. In more sophisticated processes, machine learning and other techniques might 

be used. 

 

Figure 6.8: Intent process. 
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Figure 6.9: Intent process artefacts. 

Once translated, the actions are executed, realised, enforced, or delegated. Then monitoring will collect 

information about the results. This information can then be validated, i.e. the actual effect of the actions 

being compared to the calculated and originally required effects. A report finalises one iteration of this loop. 

Reports might trigger a new iteration, in case repair actions are required. The last phase finalises the intent. 

This will happen automatically if the intent is fulfilled. Otherwise, it is triggered by an intent cancelation. 

This general process can be realised to fit requirements of any intent provider. At design time (see Figure 6.9, 

left side), all required artefacts are invariant: interface (intent gathering), models (domain vocabulary), 

processes (control loops for continuous phase, federation for crossing domain boundaries), algorithms (for 
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context). Evaluating secondary objectives allows to identify conflicting resource use, potentially in advance. 

Since actions (or policies) are selected continuously (in each iteration of the continuous intent loop), runtime 

conflicts can be identified and avoided in the translation process. 
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 Application and resource model 

An intent engine and its infrastructure can be built as an application (single, local execution of all tasks) or a 

distributed application (distributed execution of each task or task groups). 5G-CLARITY focuses on 

applications for and in networks, thus the intent engine is a distributed application. A single application 

model defines a blueprint for the implementation, more than one if required. It also serves as an abstraction 

of applications and resources that intent providers manage in order to fulfil network intents. 

Figure 6.10 shows the UML class diagram of an application and a distributed application. An application is a 

program in form of a file that can be executed on processing systems as an application process. It has units, 

which are executed as application tasks. An application process can be member of a facility, which defines 

its scope. It can also be a member of a domain, which defines a common range for itself and all its tasks. A 

computing system is the collection of all processing systems under the same management domain with no 

restrictions of their connectivity. Tasks manage some resources. 

This model covers simple and distributed applications, with units (of any width or depth) for the application 

logic. Some infrastructure is required, similar to operating systems: memory, input/output, and task 

management; distributed applications will also need shared memory management. Three orthogonal groups 

capture all application aspects: execution (system), scope (facility), and management (domain).  

In a network, every application, their parts, and resources can be modelled as executables. Things that are 

not executed cannot be accessed (they are some assets in some repository or otherwise outside the network). 

Things that cannot be executed do not exist for any network application. Modelling all of them in a similar 

way allows for a unified application and resource model, supporting system design and intent processing. 

Figure 6.11 shows the UML class diagram for executables. The core of the model is a unit, modelled using 

the composite pattern. This captures everything from large monoliths up to micro-segmented applications. 

Each unit has interfaces (input, output, management), parameters (simple policies), decision policies (e.g. 

with logic), and strategies (policies as logic). Units are mechanisms, policies are policies. 

 

Figure 6.10: Application model (UML). 

 

Figure 6.11: Application model, executable (UML). 
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This model can be expressed formally as follows. Let 𝐴 be a set of application and an application aj the tuple 

⟨𝑛, 𝑑, 𝜋, 𝑈𝑖, 𝑈𝑎⟩. Each application has a name 𝑛 (also known as identifier), a description 𝑑 (human readable 

text), and a type 𝜋. The type can relate to application classes, to categorise applications in catalogues, e.g. 

SDN applications as 𝜋𝑆𝐷𝑁 and NFV applications as 𝜋𝑁𝐹𝑉. Each application requires some infrastructure 𝑈𝑖 

and has some units 𝑈𝑎. 

𝐴 = {𝑎1..𝑛}, 𝑎𝑗 =  ⟨𝑛, 𝑑, 𝜋, 𝑈𝑖, 𝑈𝑎⟩ 

Let 𝐴𝑑 be the set of distributed applications and a distributed application 𝑎𝑗
𝑑 the tuple ⟨𝑛, 𝑑, 𝜋, 𝑈𝑖, 𝑈𝑑⟩. The 

only difference to an application is that the units are now distributed units. 

𝐴𝑑 = {𝑎1..𝑛
𝑑 }, 𝑎𝑗

𝑑 =  ⟨𝑛, 𝑑, 𝜋, 𝑈𝑖, 𝑈𝑑⟩ 

Let 𝑈 be a set of units then a unit 𝑢𝑗 is the tuple ⟨𝑛, 𝑑, 𝑈, 𝐼, 𝐹𝑢⋃Ξ𝑢⋃𝑃⟩. Units have a name and description. 

They can also have subunits 𝑈. Each unit exposes a set of interfaces 𝐼. And it can have policies in form of 

parameters 𝐹𝑢 , strategies Ξ𝑢, and decision policies 𝑃. 

𝑈 = {𝑢1..𝑛}, 𝑢𝑗 =  ⟨𝑛, 𝑑, 𝑈, 𝐼, 𝐹𝑢⋃Ξ𝑢⋃𝑃⟩ 

An application process 𝑎𝑗
𝑝

essentially executes (has) a set of application tasks 𝐴𝑡. 

𝐴𝑝 = {𝑎1..𝑛
𝑝

}, 𝑎𝑗
𝑝

=  ⟨𝑛, 𝑑, 𝐴𝑡⟩ 

An application task is an executed application unit. Let 𝐴𝑡 be a set of application tasks (of an application 

process) and an application task 𝑎𝑗
𝑡  the tuple ⟨𝑛, 𝑑, 𝜋, 𝐴𝑡 , 𝐼, 𝐹𝑡⋃Ξ𝑡⋃𝑃⟩  (name, description, and type as 

standard). It may contain other tasks (𝐴𝑡 , like a unit can contain other units), exposes interfaces, and has 

policies. 

𝐴𝑡 = {𝑎1..𝑛
𝑡 }, 𝑎𝑗

𝑡 =  ⟨𝑛, 𝑑, 𝜋, 𝐴𝑡 , 𝐼, 𝐹𝑡⋃Ξ𝑡⋃𝑃⟩ 

An interface provides access to a unit (or task). It has a name and description as standard, plus some 

expressions 𝜆. Fundamental expressions in CURD are create, update, read, delete (as defined in REST). In 

network management, we use create, delete, read, write, start, stop, and cancel-read (stop notifications). 

These are all operations ever needed on objects. All other operations are combinations and variants of them. 

These expressions can be accessed in different ways: API (function, command), RPC (function, command), 

pipe (event, stream, command), stream (event, command), file (event, command), REST, and others. 

𝐼 = {𝑖1..𝑛}, 𝑖𝑗 =  ⟨𝑛, 𝑑, 𝜆⟩ 

It can be useful to further distinguish types of interfaces, for instance operational, streaming, and 

management interfaces. An operation interface would provide one or more computational operations along 

with possible response to invocations. Streaming interfaces would be the endpoint of a stream as source or 

sink, potentially aggregating more than one flow (audio, video, etc.). Management interfaces are operational 

interfaces whose scope is management. 

A set of resources 𝑅 is part of the infrastructure of a processing system (e.g. storage, I/O). It can also be part 

of an application as application objects, e.g. MIB or RIB or even CMDB. A resource 𝑟𝑗  has a name and a 

description along with its interfaces and a set of defined values 𝐹𝑟. 

𝑅 = {𝑟1..𝑛}, 𝑟𝑗 =  ⟨𝑛, 𝑑, 𝐼, 𝐹𝑟⟩ 

A processing system is hardware and/or software capable of executing applications. It has a name, 

description, can be located (in some location model), has hardware and software resources, and zero or 

more executed application processes. 

𝛹𝑝 = {𝜓1..𝑛
𝑝

}, 𝜓𝑗
𝑝

=  ⟨𝑛, 𝑑, 𝑙, 𝑅ℎ𝑤, 𝑅𝑠𝑤, 𝐴𝑝⟩ 
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A computing system is the collection of all processing system that are under the same management. It has a 

name, a description, can be located, and provides some description for each of the collected processing 

systems. 

Ψ𝑐 = {𝜓1..𝑛
𝑐 }, 𝜓𝑗

𝑐 =  ⟨𝑛, 𝑑, 𝑙, {⟨𝜓𝑝, 𝑑⟩} ⟩ 

A facility (also known as a layer in computer networks) groups applications of the same scope. For instance, 

the network layer will group all applications with the scope of a network. In common taxonomies, BSS and 

OSS might be seen as layers, grouping business and operation support applications. 

𝐿 = {𝑙1..𝑛}, 𝑙𝑗 =  ⟨𝑛, 𝑑, {⟨𝑁𝐴𝑝
, 𝜓𝑝⟩} ⟩ 

A domain group application that share a capability. It is often used to group applications under the same 

management as well. 

𝛥 = {𝛿1..𝑛}, 𝛿𝑗 =  ⟨𝑛, 𝑑, 𝑁𝐴𝑝
⟩ 

With this application model we can now blueprint how an engine, in particular an intent engine, can be 

designed. Figure 6.12 shows the UML class diagram for an execution unit. Using the composite pattern, we 

can create a hierarchy of clusters, each may contain engines, and each engine may contain executors.  

The smallest unit is an executor. It executes a piece of logic (for processing an intent). An executor 𝑥 is a unit, 

so it comes with all elements of a unit as described above. Commonly, one would implement a generic intent 

executor realising the continuous process, and then run one of them per intent. 

𝑥 ∈ 𝑈 = ⟨𝑛, 𝑑, 𝑈𝑙 , 𝐼𝑥𝐹𝑢⋃𝛯𝑥 ⟩ 

An engine is an application that comes with the elements of applications as described above, plus a set of 

executors 𝑋 and a set of language execution units 𝑈𝑙 (as strategies to run executors). 

𝑥𝑒 ∈ 𝐴 = ⟨𝑛, 𝑑, 𝜋, 𝑈𝑖, 𝑈𝑎 ∪ 𝑋 ∪ 𝑈𝑙⟩ 

A cluster groups engines and clusters (recursively). It is a distributed application, with a set of supported 

engines 𝑋𝑒  and a set of clusters 𝑋𝑐 (full hierarchy). 

𝑥𝑐 ∈ 𝐴𝑑 = ⟨𝑛, 𝑑, 𝜋, 𝑈𝑖, 𝑈𝑑 ∪ 𝑋𝑒 ∪ 𝑋𝑐⟩ 

An intent provider then is either an application or a distributed application. Since the intent process is broken 

down into tasks, and those tasks can be implemented by application units, we can distribute any functionality 

of an intent provider where it suits best: fully inside an engine, a proxy in the engine with standard or 

proprietary access to resources and/or other applications, or fully separated from the engine. Each provider 

can use its own implementation scenario. 

 

Figure 6.12: Application model, execution unit (UML). 

 Intent language 

The intent language captures semantics of an intent declaration and expresses that in a syntax. An abstract 

syntax can be used to facilitate many concrete syntaxes, as required by interfaces (UI, CLI, etc.), different 

domains, and different providers. The main elements of an intent declaration are  
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 Header – a header with descriptive and administrative information about the intent. This includes 

an intent name (also known as identifier), description, the name of its creator, the template used to 

create it (if any), and a timestamp marking the creation. 

 Primary – the primary intent objective as “who” wants “what”. “who” is a name and a namespace 

in which the name can be resolved. For example, in an OSS there will be a list of users with identifiers 

and profiles. Here, the “who” can be declared as ns/user, with “ns” being the namespace (OSS users) 

and the “user” being a user ID. The “what” contains a verb (the required action) and an object (for 

the action). For instance, to count the lines of code of a product, this would state 

“count/lines+of+code” (note: the plus signs are used to allow for easier tokenising in a parser, for 

user interfaces they can be translated to actual white spaces). 

 Secondary – the set (including the empty set) of secondary objectives. An intent can use the 5W1H 

categories to express any possible objective: when (time and time aspects), where (location or 

distance in some coordinate system), how (in what shape of form), why (optionally a reason for the 

objective, this might be helpful in negotiation processes and to understand priorities and urgencies), 

who (who else might be involved or excluded), what (what else might be involved or excluded). 

An intent can then be written as an object containing three hash maps, one per element. The order of the 

map entries should not be important. For the header and the primary objective, these hash maps are flat 

(i.e. simple key/value lists or arrays). The map for secondary objectives may contain other hash maps. In 

simple concrete syntaxes this can be realised by overloading the key (e.g. using a ‘/’ slash to create key 

hierarchies, effectively implementing a flat representation of a tree). In sophisticated concrete syntaxes 

associative arrays or map/tree object can be used. 

An intent declaration can be translated from the abstract syntax to any concrete syntax. If a concrete syntax 

keeps the original semantics, then translation between those concrete syntaxes is also possible. If a concrete 

syntax does not keep the original semantics, e.g. when translated to some natural language, then a 

translation back to any other concrete or the original abstract syntax will not be possible. 

 

Figure 6.13: Intent language, abstract syntax (left) and translations (NLP and structured, right). 

Figure 6.13 shows the abstract syntax (left side) and two translations into natural language and pseudo 

natural language (right side) for the example of “counting lines of code” used above. The intent was created 

by a user “vdmeer” in the namespace “users”, which can be mapped to UNIX uses (or OSS users). The 

template identifier is associated with a session, which can be logged and archived for traceability. Template 
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and timestamp are also noted in the header. 

The primary element then contains the subject (who, here a user named “vdmeer”), the verb (what is wanted, 

here “count”) and on which object (here “lines of code”). The secondary element contains one objective, 

namely that some “details” are required. This intent declaration can be easily (i.e. with static translation 

rules) translated into natural language and some sudo language. Since parts of the semantics are lost (here 

obfuscated by extra words, characters, and whitespaces), a translation back into the abstract syntax is 

impossible or very hard to achieve. 

The same intent can be represented in many concrete syntaxes, some are shown in Figure 6.14, Figure 6.15, 

and Figure 6.16.  

Figure 6.14 shows tree representations as JSON (left) and XML (right). These representations are the same 

as produced by the UNIX command “tree”. The underlying schema uses directories and files, where a 

directory (and the path to it) represents a key and the file name represents the content.  

Figure 6.15 shows two different representations using JSON (left) and YAML (right). The first row is a direct 

translation from the abstract syntax into associative arrays. Some content is translated as string, which can 

be translated back to the original syntax. The second row shows JSON and YAML with the intent plus required 

information to create APEX events. APEX is a policy engine in the ONAP policy framework. It accepts these 

events and then triggers a policy (if deployed) to deal with the content. A simple APEX policy implementation 

can then be used to realise intents using policies.  

Figure 6.16 shows a translation to single lines with tokens, forming a context-free language (left side). The 

right side of the figure shows the internal representation of the intent as a set of BASH 4 associative arrays 

(one per intent element header, primary, and secondary).  

 

Figure 6.14: Intent Language, formal trees in JSON (left) and XML (right). 
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Figure 6.15: Intent language, JSON (left) and YAML (right) versions. 

 

Figure 6.16: Intent language, translation (line, left) and flat arrays (BASH, right). 

All figures shown in this subsection show the same intent (count lines of code with details). Any other intent 

can be translated into the same concrete syntaxes and formats. The only difference then are the details of 

primary and secondary objectives, and the potential length of secondary objectives (since they can declare 

a long list of items). 

6.3 Modelling 5G-CLARITY use cases as intents 

In this section we explore how to model using intents several management operations in 5G-CLARITY, 

including the operations required by some of the ML models introduced in Section 4 which are instantiated 

in the AI engine, and some of the slice provisioning operations enabled by the 5G-CLARITY management and 

orchestration stratum. Additional use cases may be modelled using intents in subsequent deliverables. 

Each use case is described using a summary table. At the current modelling stage, the focus is on the main 

objective, the required input (later to be modelled as intent) and the provided output of the algorithm along 

with an action (later to be modelled as an intent). 
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 Title: describes the primary objective of the algorithm, which indicates or leads directly to the 

primary part of an intent the algorithm does provide 

 Input: Describing Parameters and semantics of the input required by the algorithm. This input will 

be modelled later as an intent (or parts of an intent) in form of a variation of secondary objectives 

(i.e. parameter with given semantics and a required or expected value). 

 Output: Describes the output the algorithm produces, with parameters and defined semantics. This 

output can later be used as part of an intent, here variations of secondary objectives with semantics 

and values. 

 Intent Giver: Determines the role that should create (or give) an intent to the algorithm. In most 

cases, this will be an operator using the dashboard, in some cases (especially for future algorithms), 

this might also be another component of a 5G system. 

 Intent action: Defines the decided action in terms of what the algorithm states a system to realise. 

This action will later be aligned with other intent providers. Here it represents most likely the primary 

objective. For instance, an algorithm might decide to activate parts of a Wi-Fi network, then the 

action would be “activate Wi-Fi” (primary) with more details (which parts, secondary). This intent 

can then be used on any provider able to activate a Wi-Fi network. 

 Intent Provider: Describing the entity in the 5G-CLARITY system in charge of executing the intent 

action. Using this statement, we can design the required providers which abstract from other 5G 

Clarity components in other planes of the 5G network. 

Complementing the previous table each use case includes a sequence chart describing the interactions 

between the intent giver, the intent engine and the intent providers. 

  SLA violation-success rate prediction  

This use case corresponds to the ML algorithm described in Section 4.2. 

Within the 5G-CLARITY management architecture, the SLA violation/success rate prediction process follows 

the flow of operations depicted in Figure 6.17 and summarized as follows:  

 Step 1: the private network operator sends a request to the intent engine on the probability/margin 

of possible SLA violations/success rate which is based on a basic natural (English) language such as 

“I want a prediction on SLA violations”. This intent is summarized in Table 6-1. 

 Step 2: the intent engine translates this request to ML model level and forwards this request to the 

ML model.  

 Step 3: the ML model decides what type of telemetry data is needed to provide a prediction on the 

SLA violations such as (i) UE aggregated throughput that is reported by gNB/AP to understand traffic 

volume; (ii) offered load per cell to understand spatial volume distribution; (iii) Slice/Service Type 

(SST) and success rate to understand traffic class and its performance; (iv) UE connected cell 

information to understand user mobility pattern; and (v) the SLA details to obtain the 

violation/success rate. Then, the ML model sends a request to intent engine on providing the 

required telemetry data, as outlined in Table 6-1. 

 Step 4: the intent engine translates this request to the telemetry collector. 

 Step 5: the telemetry collector provides the requested data to the intent engine. 

 Step 6: the intent engine provides the data to the ML model. 



D4.1 – Initial Design of the SDN/NFV Platform and Identification of Target 

        5G-CLARITY ML Algorithms 

133 
5G-CLARITY [H2020-871428] 

 Step 7: the telemetry data is firstly used by the offline trained ML model to forecast the network 

traffic/load for the overall network traffic volume and spatial volume distribution. Then the 

estimated network traffic/load is used to predict possible SLA violations/success rate which is then 

sent to the intent engine as a probability/margin for possible SLA violations/success rate.  

 Step 8: the intent engine translates the estimated probability/margin for possible SLA violations to 

basic natural language and informs the private network operator about the margins.  

Table 6-1. SLA Violation/Success Rate Prediction – Operator to the ML Model. 

Intent 1: SLA violation/success rate prediction 

Input Details of the SLA terms 

Output Configure and trigger ML model for network traffic/load forecast in order to predict the 

overall network traffic volume and spatial volume distribution, SLA violation/success rate 

prediction 

Intent Giver Operator (human intervention), AI engine (closed loop) 

Intent Action Compute a probability/margin for possible SLA violations/success rate 

Intent Provider ML model of network traffic/load 

 

Table 6-2. SLA Violation/Success rate Prediction – ML Model to Telemetry. 

Intent 2: Telemetry data request and ML model computation 

Input Telemetry data request (UE aggregated throughput, load per cell, Slice/Service Type (SST) and 

success rate, UE connected cell 

Output SLA violation/success rate prediction 

Intent Giver ML model 

Intent Action Provide telemetry data from network to the ML model and compute SLA violation/success 

rate prediction 

Intent Provider Data Processing subsystem 
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Figure 6.17. Flow of SLA violation/success rate prediction process within 5G-CLARITY management architecture. 

 AT3S traffic routing/handover  

This use case corresponds to the ML algorithm described in Section 4.3. 

The following intents are identified: 

- Intent 1 (Table 6-3): Used by the NPN operator to set up a high-level business policy demanding high 

reliability for a specific connection, e.g. a particular device in the network.  

- Intent 2 (Table 6-4): Intent generated by the ML model to request a subset of Telemetry data to the 

5G-CLARITY data processing subsystem (see Section 2.4.2). 

- Intent 3 (Table 6-5): Based on the received telemetry the ML model computes the desired AT3S 

policy configuration and an intent is generated to enforce such configuration. 

Table 6-3: Maintenance of Link reliability – Operator to the ML Model. 

Intent 1: Maintenance of link reliability 

Input Set of goals provided by the operator on reliability performance/requirement 

Output Configure and trigger the ML model that models UE mobility and routes traffic flows in order 

to achieve link reliability requirements 

Intent Giver Operator (human intervention), AI engine (closed loop) 

Intent Action Configure and trigger the ML model to decrease packet drop rate 
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Intent Provider ML model for UE mobility prediction and traffic routing. 

Table 6-4: Maintenance of Link Reliability -- ML Model to Telemetry. 

Intent 2: Telemetry data request and computation of ML model 

Input Telemetry data for UE connected cell/AP/SSID (user mobility pattern), UE DL packet drop rate 

(handover failure), RSSI (link performance/blockage) 

Output Pointer to required telemetry 

Intent Giver ML model/algorithm 

Intent Action Request data to the Data Processing subsytem 

Intent Provider Data processing subsystem 

Table 6-5: Maintenance of Link Reliability -- ML Model to Telemetry. 

Intent 2: Telemetry data request and computation of ML model 

Input AT3S weights for a given UE 

Output Configuration of AT3S user plane function 

Intent Giver ML model/algorithm 

Intent Action Configure the AT3S user plane scheduling weights in the user plane function managing the 

considered UE 

Intent Provider AT3S controller in RIC 

 

A sequence chart describing the previous intents and involved elements is depicted in Figure 6.18. 

 

Figure 6.18.  Sequence diagram for the AT3S ML model interaction with the Intent Engine 
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 Resource provisioning and optimisation  

This use case corresponds to the ML algorithm described in Section 4.8, and the required intents are 

described in Table 6-6. 

Table 6-6 Specification of Intents Required for Resource Provisioning and Optimization. 

Intent 1: Required slice SLA 

Input Performance attributes (e.g. required capacity), business intents (i.e. operator’s high-level 

goals) 

Output Configure and instantiate ML model to enforce desired policy 

Intent Giver NPN Operator (human intervention), AI engine (closed loop) 

Intent Action Instantiate required ML model in AI Engine 

Intent Provider AI Engine 

Intent 2: Telemetry provisioning 

Input Metrics related to network performance monitoring (e.g. aggregated throughput, resource 

utilisation and number of active users) that are required by the ML model 

Output Requested metrics with their associated values 

Intent Giver AI engine (ML model) 

Intent Action Provide telemetry to the AI engine  

Intent Provider Telemetry Collector 

Intent 3: Update controller’s configuration 

Input Rule(s) of the non-real time controller modifying network parameters related to 5GNR/LTE 

(e.g. transmit power, bandwidth), Wi-Fi (e.g. transmit power, channels), LiFi (TBD) and others 

(e.g. AT3S related) 

Output Updated configuration of the controller 

Intent Giver AI engine (ML model) 

Intent Action Update on multi-WAT non-RT parameters 

Intent Provider Slice Manager 

 

The resource provisioning and optimization process consists of a set of operations that are described in 

Figure 6.19. In particular, the private network operator may send a request (Intent 1 - Table 6-6) towards the 

Intent Engine in order to deploy a 5G-CLARITY slice. This request is based on natural (English) language such 

as “I want a 5G-CLARITY slice” and it can include performance and functional attributes related to the desired 

behavior of the slice. Alternatively, the private network operator may send a business intent that is related 

to its high-level objectives, e.g. “I want to minimize energy consumption”. 

The Intent Engine delivers this request together with additional information (e.g. SLAs, list of business intents) 

to the AI Engine. This module decides what telemetry is required to perform the resource provisioning and 

optimization. As a result, it generates a new intent (Intent 2 - Table 6-6) towards the Intent Engine in order 

to request telemetry (e.g. aggregated throughput, resource utilization levels, number of active users, etc.). 

After processing the intent, the telemetry module receives the data request and it provides the information 

required to access the data (e.g. a data pointer). This information is delivered to the AI Engine through the 

Intent Engine. Once the ML model receives the telemetry, it is able to derive the optimal configuration of 

the non-real time controller that is in charge of resource provisioning. Then, such configuration will be sent 
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in the form of an intent to the Slice Manager via the Intent Engine (Intent 3 - Table 6-6). 

 

Figure 6.19 Flow of resource provisioning and optimization process within 5G-CLARITY management architecture. 

 RAN slicing in multi-tenant networks  

This use case corresponds to the ML algorithm described in Section 4.4. Figure 6.20 shows the workflow 

associated to this use case including the different interactions with the intent engine.  

During the whole process three intents are generated towards the intent engine. The first intent (see Table 

6-7) is triggered by the operator, requesting a RAN slice for a tenant with specific SLA terms given by an 

aggregate capacity across all cells and a maximum bit rate per cell. In order to fulfil this request, the intent 

engine will inform the ML model about the SLA terms of this RAN slice so that it can determine the resource 

quota assigned to the different tenants in each cell. For this purpose, the ML model will trigger a new intent 

(intent 2, detailed in Table 6-8), requesting the required measurements by the algorithm, which are the 

resource usage (i.e. the fraction of physical resources used for data traffic in a cell) per cell and tenant, the 

total throughput per tenant across all the cells and the offered load per cell and tenant. Then, the intent 

engine will contact the telemetry system, which will gather the measurements and will provide them back 

to the intent engine that will forward them to the ML model. Based on the received information, the ML 

model will determine the resource quota to be assigned to each tenant in each cell and will provide the result 

to the slice manager through another intent (intent 3, detailed in Table 6-9), so that it can enforce this 

configuration in the network.  
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Figure 6.20 Workflow of the RAN slicing for multi-tenant networks use case. 

Table 6-7 Intent 1 in the ML Algorithm for RAN Slicing in Multi-Tenant Networks. 

Intent 1: Provide SLA for each slice 

Input SLA terms (aggregate capacity across all cells, maximum bit rate per cell) for the RAN slice of 

a tenant 

Output Configure and trigger ML model in AI engine 

Intent Giver Operator 

Intent Action To contact the ML model to determine the configuration of the resource quota assigned to 

each tenant in each cell 

Intent Provider ML model 

Table 6-8 Intent 2 in the ML Algorithm for RAN Slicing in Multi-Tenant Networks. 

Intent 2: Obtain Telemetry 

Input Telemetry data request (resource usage per cell and tenant, total throughput per tenant 

across all the cells and offered load per cell and tenant) 

Output Pointer to the requested telemetry data 

Intent Giver ML model 

Intent Action Gather telemetry data from the network 

Intent Provider Data processing subsystem 
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Table 6-9 Intent 3 in the ML Algorithm for RAN Slicing in Multi-Tenant Networks. 

Intent 3: Update resource allocation in each cell/tenant 

Input Resource quota per cell/tenant to be configured 

Output Configuration of the resource quota 

Intent Giver ML model 

Intent Action Configure the assigned resource quota per cell/tenant 

Intent Provider Slice Manager 

 Dynamic transport network setup and computing resource provisioning 

This use case corresponds to the ML algorithm described in Section 4.9, and comprises the following intents: 

- Intent 1 (Table 6-10): The operator communicates a high-level policy to the Intent Engine. Then, the 

involved ML models are configured to be driven by the operator intents and launched. The operator 

intents might be both high level business goals (e.g., maximize the network revenue) or performance 

objective (e.g., minimize the energy consumption of the network). 

- Intent 2 (Table 6-11): The ML algorithm request the required telemetry and predictive data analytics 

to compute the configuration of the TN and the computing resources allocation for the network 

services. The requested data provides a summary of the network state, which represents the 

observations of the ML models. 

- Intent 3 (Table 6-12): The ML algorithm issues a command to configure the transport network. 

- Intent 4 (Table 6-13): The ML algorithm issues a command to allocate or release computing resources 

to the network services 

Table 6-10: Intent to Configure and Trigger the ML Models for Dynamic Transport Network Setup and Computing 

Resources Provisioning. 

Intent 1: Transport network policy provisioning 

Input Set of goals provided by the operator to drive the network operation. 

Output Configuration and triggering of the required ML models to achieve the operator’s objectives.  
 

Intent Giver Operator. 

Intent Action Configure and trigger the needed ML models to optimize the dynamic transport network 

setup and computing resources provisioning in order to meet the operator’s goals. 

Intent Provider ML models. 

Table 6-11: Intent to Request Telemetry Data and Predictive Data Analytics. 

Intent 2: Telemetry request 

Input Set of telemetry metrics (e.g., servers and links resources utilization) and data analytics (e.g., 
expected traffic matrix, nodes and links time-to-failures). 

Output Value of the requested telemetry metrics and data analytics. 
 

Intent Giver ML models (AI Engine) 

Intent Action Provide ML models with access to the requested telemetry metrics and data analytics. 

Intent Provider Telemetry and AI Engine. The latter hosts ML models to realize the predictive data analytics. 
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Table 6-12: Intent to Configure the Transport Network. 

Intent 3: Transport network configuration 

Input - Links time-to-failures 
- Temporal profile demand per 5G-CLARITY slice, per 5QI, and per source/destination pair 

(Predicted traffic matrix). 
- Traffic characteristics per 5QI (e.g., moments for the data rate process) 
- Network topology 
- Links resources utilization. 

 

Output - The translation of the 5QIs into IEEE 802.1Q traffic classes for each 5G-CLARITY slice 

- Aggregated transport resources (e.g., link capacities and buffer sizes) per traffic class and 
per 5G-CLARITY slice 

- Paths allocated for each 5G-CLARITY slice 

- Output port configuration of the TSN bridges, e.g., gate control list and time windows size 

 

Intent Giver ML models (AI Engine) 

Intent Action Configure the transport network as specified in the request. 

Intent Provider SDN Controller. 

Table 6-13: Intent to Scale Network Services. 

Intent 4: Compute resource allocation 

Input - Computing nodes time-to-failures 
- Temporal profile demand per 5G-CLARITY slice, per 5QI, and per source/destination pair 

(Predicted traffic matrix). 
- Traffic characteristics per 5QI (e.g., moments for the data rate process) 
- Processing time distributions for every VNF/Service app 
- Clouds available resources. 

 
Output - Computing resources (e.g., memory, disk and CPU) to be allocated to each VNF instance. 

- Set of affinity rules that restrict the instantiation of the VNF instances on the servers. 
 

Intent Giver ML models (AI Engine). 

Intent Action Scale the specified set of network services: i) reserve/release computational resources, ii) 

apply the specified set of affinity rules to deploy the VNFs on the servers. 

Intent Provider NFVO. 

 

The previous intents and the various actors involved are depicted in the sequence diagram of Figure 6.21: 

Operation call flow of the ML algorithm for the dynamic resource provisioning and the transport network 

configuration. 
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Figure 6.21: Operation call flow of the ML algorithm for the dynamic resource provisioning and the transport 

network configuration. 

 Intent-based slice provisioning  

This use case describes an intent based slice provisioning workflow using the 5G-CLARITY slice and service 

provisioning system introduced in Section 2. Two basic intents are identified: 

 Intent 1: Deploy a slice, which configures the 5G-CLARITY multi-tenant infrastructure to provision 

one slice. 

 Intent 2: Instantiate a service, which deploys an application service in a given slice. 

These intents are further described in Table 6-14. 

Table 6-14: Slice provisioning process 

Intent 1: 5G-CLARITY Slice provisioning  

Input Infrastructure nodes participating in the slice: wireless and compute 

Quotas for the wireless, transport and compute nodes 

Slice Identifiers: PLMNIDs, S-NSSAIs, SSIDs 

Output A pointer to the deployed slice is returned 
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Intent Giver NPN Operator 

Intent Action Provision a 5G-CLARITY slice 

Intent Provider Slice Manager 

 

Intent 2: 5G-CLARITY Service Instantiation  

Input Slice identifier, service identifier 

Output Pointer to the running service 

Intent Giver NPN Operator or 3rd party (e.g. MNO) 

Intent Action Instantiate an application service 

Intent Provider Slice Manager (through NFVO) 

 

The sequence chart in Figure 6.22 describes the interactions between the Intent giver (user), the Intent 

Engine and the Slice Manager that is the main provider for the slice and service provisioning intents. Notice 

however that many other components of the 5G-CLARITY management and orchestration stratum are 

hidden behind the slice manager (e.g. multi-WAT non-RT RIC, Transport SDN controller, NFVO) and not 

shown to simplify the diagram. 

It is worth noting that the two intents described in this section admit variations, i.e.: 

 Intent 1 to provision a slice, depends on whether a new slice is instantiated requiring a new PLMNID, 

or on whether the PLMNID is already in place and a S-NSSAI is deployed, 

 Intent 2 to instantiate a service, depends on whether there is an already running service on that slice 

that needs to be replaced. 
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Figure 6.22. Intent based slice provisioning. 
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 Adaptive defect detection a smart factory  

This use case corresponds to the ML algorithm described in Section 4.10. 

The operator or NPN smart factory worker provides adaptive defect detection intent to the Intent Engine 

(Intent 1 - Table 6-15) along with a set of goals that is going to be used to recognize potential defects in the 

production line. Then, the Intent Engine configures and initiates ML algorithm for adaptive defect detection 

that is responsible to detect defective products/pieces and to remove them from the production line. 

Table 6-15 Intent to Configure and Trigger Defect Detection ML Model.  

Intent 1: Defect detection monitoring 

Input Set of goals provided by the operator/factory worker to recognize potential defects in the 

production line. 

Output Configure and trigger ML model for adaptive defect detection 

Intent Giver Operator/NPN smart factory worker 

Intent Action Trigger, configure, deploy and monitor the involved ML models according to the high-level 

goals provided of the operator’s intent 

Intent Provider ML model 

Once the ML model for defect detection is triggered, various telemetry data from sensors, UE modems, 

network nodes, cameras, applications etc. are requested from data lake via the Intent Engine (Intent 2 - Table 

6-16). Intent Engine gets the information regarding the required telemetry from the AI engine and passes it 

to the data lake or telemetry database. Then, data lake processes this request and provides the required 

data to the AI engine which then uses the data to train/retrain the ML model, manage life cycle of the ML 

model and predict any defective piece/product in the production line. 

Table 6-16 Intent to Request Telemetry Data and ML Model Configuration 

Intent 2: Telemetry data request and ML model configuration 

Input - UE modems and network nodes telemetry 
- Computing hosts telemetry, e.g. edge servers, CPU/GPU/FPGA characteristics 
- Object detection application telemetry, e.g. type of objects, defect conditions 
- Sensors and cameras telemetry 
- Targeted operation conditions including timing budget and energy budget 

Output - ML model in use 
- Allocated resources for hosting the ML model 
- Measurement data for monitoring and life cycle management of the ML model 
- Inference/prediction actions towards the physical controller equipment in the factory, 

e.g. robotic arm, conveyor belt, camera 

Intent Giver ML model/AI engine 

Intent Action Provide the requested telemetry to the ML model 

Intent Provider Telemetry/data lake and ML model/AI engine 

Based on the output of the ML model for defect detection, i.e. if a defective piece/product is detected, the 

Intent Engine (Intent 3 - Table 6-17) either (i) alerts the smart factory worker to command an intervention; 

or (ii) automatically command a configuration/action to the physical controller equipment such as robots, 

robotic arm, conveyor belt, etc. to stop the line or remove the defective product from the production line. 
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Table 6-17 Intent to Remove Defective Product/Piece from the Production Line 

Intent 3: Intervention/removal of the defect 

Input Inference/defect detection result 

Output If a defect is detected, either: 

- Alert a remote worker to command an intervention (human intervention) 
- Command a configuration/action towards the physical controller equipment in the 

factory, e.g. robotic arm, conveyor belt, camera (adaptive automation) 

Intent Giver ML model/AI engine (closed loop) 

Intent Action If there is a defective product/piece, stop the line or take the defective piece out of the 

production line 

Intent Provider Smart factory worker (human intervention)/controller equipment (adaptive automation) 

The sequence chart in Figure 6.23 depicts the previous intents and elements involved. 

 

Figure 6.23 Flow of adaptive AI-based defect detection in a smart factory.  
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 Conclusions and Next Steps  

This deliverable has specified the details of the parts of 5G-CLARITY architecture that realize the initial design 

of the SDN/NFV platform and identification of target 5G-CLARITY ML algorithms including, 1) network slicing 

solution for private venues; 2) integrated multi-WAT real-time telemetry system; 3) integration of private 

and public networks; 4) ML algorithms for supporting autonomous network management; 5) AI-engine that 

deals with the execution and maintenance of ML models; and 6) intent-based networking for facilitating 

customer interaction in private networks. These are critical functionalities for satisfying the requirements 5G 

use cases, especially where the AI play a crucial role, and their implementation in the next phase of the 5G-

CLARITY project should lead to important extensions of the state of the art solutions for management, 

orchestration and intelligence stratums. 

The design of related components, which is detailed in Section 2 to 6 has addressed the main objectives that 

were identified in the introduction. Section 1.2 has demonstrated the initial design and requirements of 5G-

CLARITY management and orchestration stratum and intelligence stratum. Section 2 provided the initial 

design for the multi-WAT non-RT Controller and the Slicing solution in the private and public networks (from 

slice preparation to the configuration and NS provisioning). Section 3 described the type of management 

models in the 5G-CLARITY and integration of private network with the management system of public 

networks. Sections 4 and 5 focused on leveraging machine learning for supporting autonomous 

network management from different perspectives. The ML will be deployed in the 5G-CLARITY’s AI engine as 

ML services, consuming data from the 5G-CLARITY Data Management component and provide predictions 

for 5G-CLARITY management and network functions. Finally, Section 6 has given design of intent-based 

policy language, which will be sat over the slice manager and used by the AI engine to ease the management 

and operation of the network.   

Next for 5G-CLARITY is to implement and develop, 1) the initial slicing models in conjunction of MNOs with 

the private network slices; 2) AI engine with 9 machine learning algorithms to perform a set of network 

management functions in 5G-CLARITY platform; and 3) intent-based networking interface. 
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